Search results for: Educational Data Mining (EDM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8008

Search results for: Educational Data Mining (EDM)

7528 Multitasking Trends and Impact on Education: A Literature Review

Authors: Mohammed Alkahtani, Ali Ahmad, Saber Darmoul, Shatha Samman, Ayoub Al-zabidi, Khaled Ba Matraf

Abstract:

Education systems are complex and involve interactions between humans (teachers and students); media based technologies, lectures, classrooms, etc. to provide educational services. The education system performance is characterized by how well students learn, which is measured using student grades on exams and quizzes, achievements on standardized tests, among others. Advances in portable communications technologies, such as mobile phones, tablets, and laptops, created a different type of classroom, where students seem to engage in more than just the intended learning activities. The performance of more than one task in parallel or in rapid transition is commonly known as multitasking. Several operations in educational systems are performed simultaneously, resulting in a multitasking education environment. This paper surveys existing research on multitasking in educational settings, summarizes literature findings, provides a synthesis of the impact of multitasking on performance, and identifies directions of future research.

Keywords: Education systems, GPA, multitasking, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6045
7527 The Framework for Adaptive Games for Mobile Application Using Neural Networks

Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati

Abstract:

The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform

Keywords: Adaptive games, neural networks, mobile games, BlackBerry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
7526 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data mining, k-means, MCOKE, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
7525 Teacher Education Reform and InternationalGlobalization Hegemony: Issues and Challengesin Turkish Teacher Education

Authors: Ismail Guven

Abstract:

Educational reforms are focused point of different nations. New reform movements generally claim that something is wrong with the current state of affairs, and that the system is deficient in its goals, its accomplishments and it is accused not being adopted into global changes all over the world. It is the same for Turkish education system. It is considered those recent reforms of teacher education in Turkey and the extent to which they reflect a response to global economic pressures. The paper challenges the view that such imposes are inevitable determinants of educational policy and argues that any country will need to develop its own national approach to modernizing teacher education in light of the global context and its particular circumstances. It draws on the idea of reflexive modernization developed by educators and discusses its implications for teacher education policy. The paper deals with four themes teacher education in last decade policy in Turkey; the shift away from the educational disciplines, the shift towards school-based approaches, and the emergence of more centralized forms of accountability of teacher competence.

Keywords: Teacher education, globalization, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
7524 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources

Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño

Abstract:

This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.

Keywords: Educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
7523 A Growing Natural Gas Approach for Evaluating Quality of Software Modules

Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur

Abstract:

The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.

Keywords: Growing Neural Gas, data clustering, fault prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
7522 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597
7521 Building Virtual Reality Environments for Distance Education on the Web: A Case Study in Medical Education

Authors: Kosmas Dimitropoulos, Athanasios Manitsaris, Ioannis Mavridis

Abstract:

The paper presents an investigation into the role of virtual reality and web technologies in the field of distance education. Within this frame, special emphasis is given on the building of web-based virtual learning environments so as to successfully fulfill their educational objectives. In particular, basic pedagogical methods are studied, focusing mainly on the efficient preparation, approach and presentation of learning content, and specific designing rules are presented considering the hypermedia, virtual and educational nature of this kind of applications. The paper also aims to highlight the educational benefits arising from the use of virtual reality technology in medicine and study the emerging area of web-based medical simulations. Finally, an innovative virtual reality environment for distance education in medicine is demonstrated. The proposed environment reproduces conditions of the real learning process and enhances learning through a real-time interactive simulator.

Keywords: Distance education, medicine, virtual reality, web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
7520 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
7519 Using Data Mining Methodology to Build the Predictive Model of Gold Passbook Price

Authors: Chien-Hui Yang, Che-Yang Lin, Ya-Chen Hsu

Abstract:

Gold passbook is an investing tool that is especially suitable for investors to do small investment in the solid gold. The gold passbook has the lower risk than other ways investing in gold, but its price is still affected by gold price. However, there are many factors can cause influences on gold price. Therefore, building a model to predict the price of gold passbook can both reduce the risk of investment and increase the benefits. This study investigates the important factors that influence the gold passbook price, and utilize the Group Method of Data Handling (GMDH) to build the predictive model. This method can not only obtain the significant variables but also perform well in prediction. Finally, the significant variables of gold passbook price, which can be predicted by GMDH, are US dollar exchange rate, international petroleum price, unemployment rate, whole sale price index, rediscount rate, foreign exchange reserves, misery index, prosperity coincident index and industrial index.

Keywords: Gold price, Gold passbook price, Group Method ofData Handling (GMDH), Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
7518 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang

Abstract:

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.

Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
7517 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4872
7516 Promoting Open Educational Resources (OER) in Theological/Religious Education in Nigeria

Authors: Miracle Ajah

Abstract:

One of the biggest challenges facing Theological/ Religious Education in Nigeria is access to quality learning materials. For instance at the Trinity (Union) Theological College, Umuahia, it was difficult for lecturers to access suitable and qualitative materials for instruction especially the ones that would suit the African context and stimulate a deep rooted interest among the students. Some textbooks written by foreign authors were readily available in the School Library, but were lacking in the College bookshops for students to own copies. Even when the College was able to order some of the books from abroad, it did not usher in the needed enthusiasm expected from the students because they were either very expensive or very difficult to understand during private studies. So it became necessary to develop contextual materials which were affordable and understandable, though with little success. The National Open University of Nigeria (NOUN)’s innovation in the development and sharing of learning resources through its Open Courseware is a welcome development and of great assistance to students. Apart from NOUN students who could easily access the materials, many others from various theological/religious institutes across the nation have benefited immensely. So, the thesis of this paper is that the promotion of open educational resources in theological/religious education in Nigeria would facilitate a better informed/equipped religious leadership, which would in turn impact its adherents for a healthier society and national development. Adopting a narrative and historical approach within the context of Nigeria’s educational system, the paper discusses: educational traditions in Nigeria; challenges facing theological/religious education in Nigeria; and benefits of open educational resources. The study goes further to making recommendations on how OER could positively influence theological/religious education in Nigeria. It is expected that theologians, religious educators, and ODL practitioners would find this work very useful.

Keywords: Nigeria, OER, religious education, theological education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
7515 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharanai

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: Computer Assisted Learning, Intelligent Tutoring system, Learner Centered Design, Mobile Mediated Learning and Teacher education (MMLTE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
7514 Utilizing Virtual Worlds in Education: The Implications for Practice

Authors: Teresa Coffman, Mary Beth Klinger

Abstract:

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

Keywords: Virtual Environments, MUVEs, Constructivist, Distance Learning, Learner Centered.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
7513 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.

Keywords: Data cleaning, dependency rules, violation data discovery, data repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610
7512 Coalescing Data Marts

Authors: N. Parimala, P. Pahwa

Abstract:

OLAP uses multidimensional structures, to provide access to data for analysis. Traditionally, OLAP operations are more focused on retrieving data from a single data mart. An exception is the drill across operator. This, however, is restricted to retrieving facts on common dimensions of the multiple data marts. Our concern is to define further operations while retrieving data from multiple data marts. Towards this, we have defined six operations which coalesce data marts. While doing so we consider the common as well as the non-common dimensions of the data marts.

Keywords: Data warehouse, Dimension, OLAP, Star Schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
7511 Eclectic Rule-Extraction from Support Vector Machines

Authors: Nahla Barakat, Joachim Diederich

Abstract:

Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.

Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
7510 The Pedagogical Integration of Digital Technologies in Initial Teacher Training

Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos

Abstract:

The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.

Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
7509 Cloud Computing for E-Learning with More Emphasis on Security Issues

Authors: Sajjad Hashemi, Seyyed Yasser Hashemi

Abstract:

In today's world, success of most systems depend on the use of new technologies and information technology (IT) which aimed to increase efficiency and satisfaction of users. One of the most important systems that use information technology to deliver services is the education system. But for educational services in the form of E-learning systems, hardware and software equipment should be containing high quality, which requires substantial investment. Because the vast majority of educational establishments can not invest in this area so the best way for them is reducing the costs and providing the E-learning services by using cloud computing. But according to the novelty of the cloud technology, it can create challenges and concerns that the most noted among them are security issues. Security concerns about cloud-based E-learning products are critical and security measures essential to protect valuable data of users from security vulnerabilities in products. Thus, the success of these products happened if customers meet security requirements then can overcome security threats. In this paper tried to explore cloud computing and its positive impact on E- learning and put main focus to identify security issues that related to cloud-based E-learning efforts which have been improve security and provide solutions in management challenges.

Keywords: Cloud computing, E-Learning, Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3219
7508 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province

Authors: Tanida Julvanichpong

Abstract:

Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).

Keywords: Predictive factors, exercise behaviors, junior high school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
7507 Cultivating Individuality and Equality in Education: Ideas on Respecting Dimensions of Diversity within the Classroom

Authors: Melissa C. LaDuke

Abstract:

This systematic literature review sought to explore the dimensions of diversity that can affect classroom learning. This review is significant as it can aid educators in reaching more of their diverse student population and creating supportive classrooms for teachers and students. For this study, peer-reviewed articles were found and compiled using Google Scholar. Key terms used in the search include student individuality, classroom equality, student development, teacher development, and teacher individuality. Relevant educational standards such as Common Core and Partnership for the 21st Century were also included as part of this review. Student and teacher individuality and equality is discussed as well as methods to grow both within educational settings. Embracing student and teacher individuality was found to be key as it may affect how each person interacts with given information. One method to grow individuality and equality in educational settings included drafting and employing revised teaching standards which include various Common Core and US State standards. Another was to use educational theories such as constructivism, cognitive learning, and Experiential Learning Theory. However, barriers to growing individuality, such as not acknowledging differences in a population’s dimensions of diversity, still exist. Studies found preserving the dimensions of diversity owned by both teachers and students yielded more positive and beneficial classroom experiences.

Keywords: Classroom equality, student development, student individuality, teacher development, teacher individuality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
7506 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
7505 Effects of an Inclusive Educational Model for Students with High Intellectual Capacity and Special Educational Needs: A Case Study in Talentos UdeC, Chile

Authors: Gracia V. Navarro, María C. González, María G. González, María V. González

Abstract:

In Chile, since 2002, there are extracurricular enrichment programs complementary to regular education for students with high intellectual capacity. This paper describes a model for the educational inclusion of students, with special educational needs associated with high intellectual capacity, developed at the University of Concepción and its effects on its students, academics and undergraduate students that collaborate with the program. The Talentos UdeC Program was created in 2003 and is intended for 240 children and youth from 11 to 18 years old, from 15 communes of the Biobio region. The case Talentos UdeC is analyzed from a mixed qualitative study in which those participating in the educational model are considered. The sample was composed of 30 students, 30 academics, and 30 undergraduate students. In the case of students, pre and post program measurements were made to analyze their socio-emotional adaptation, academic motivation and socially responsible behavior. The mentioned variables are measured through questionnaires designed and validated by the University of Concepcion that included: The Socially Responsible Behavior Questionnaire (CCSR); the Academic Motivation Questionnaire (CMA) and the Socio-Emotional Adaptation Questionnaire (CASE). The information obtained by these questionnaires was analyzed through a quantitative analysis. Academics and undergraduate students were interviewed to learn their perception of the effects of the program on themselves, on students and on society. The information obtained is analyzed using qualitative analysis based on the identification of common themes and descriptors for the construction of conceptual categories of answers. Quantitative results show differences in the first three variables analyzed in the students, after their participation for two years in Talentos UdeC. Qualitative results demonstrate perception of effects in the vision of world, project of life and in other areas of the students’ development; perception of effects in a personal, professional and organizational plane by academics and a perception of effects in their personal-social development and training in generic competencies by undergraduates students.

Keywords: Educational model, high intellectual capacity, inclusion, special educational needs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
7504 Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives

Authors: Tsuyoshi Okita

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
7503 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
7502 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

Authors: Luís Pina

Abstract:

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Keywords: GSM, marine biology, marine turtles, USSD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
7501 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: Cooccurrence graph, entity relation graph, unstructured text, weighted distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
7500 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem

Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez

Abstract:

Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.

Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
7499 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670