Search results for: Air quality prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3894

Search results for: Air quality prediction

3414 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
3413 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Authors: S. Niksarlioglu, F. Kulahci

Abstract:

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Keywords: Earthquake, Modeling, Prediction, Radon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
3412 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
3411 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah

Abstract:

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
3410 Technical Determinants of Success in Quality Management Systems Implementation in the Automotive Industry

Authors: Agnieszka Misztal

Abstract:

The popularity of quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel, it is appropriate to focus attention on the selection of companies aspiring to a quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out a series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car) 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). The identified determinants were divided into two types of criteria: internal and external, as well as hard and soft. The article presents the hard – technical factors that an automotive company must meet in order to achieve the goal of the quality management system implementation.

Keywords: Automotive industry, quality management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
3409 Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator

Authors: Ng Yee Luon, Mohd Zamri Yusoff, Norshah Hafeez Shuaib

Abstract:

Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.

Keywords: Mesh generation, tetrahedral, CFD, Delaunay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
3408 Evaluation of Water Quality of the Surface Water of the Damietta Nile Branch, Damietta Governorate, Egypt

Authors: M. S. M. El-Bady

Abstract:

Water quality and heavy metals pollution of the Damietta Nile Branch at Damietta governorate were investigated in the current work. Fourteen different sampling points were selected along the Damietta Nile branch from Ras EL-Bar (sample 1) to Sheremsah (sample 14). Physical and chemical parameters and the concentrations of Cd, Cr, Cu, Ni, Fe, Al, Hg, Pb and Zn were investigated for water quality assessment of Damietta Nile Branch at Damietta Governorate. Most of the samples show that the water is suitable for drinking and irrigation purposes. All locations of samples near the sea are unsuitable water but the samples in the south direction away from the sea are suitable or good water for drinking and irrigation.

Keywords: Water quality indices, Damietta Governorate, Nile River, pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
3407 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: Time series modelling, ARIMA model, River runoff, Karkheh River, CLS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
3406 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
3405 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
3404 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: Physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
3403 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
3402 A Quantitative Analysis of GSM Air Interface Based on Radiating Columns and Prediction Model

Authors: K. M. Doraiswamy, Lakshminarayana Merugu, B. C. Jinaga

Abstract:

This paper explains the cause of nonlinearity in floor attenuation hither to left unexplained. The performance degradation occurring in air interface for GSM signals is quantitatively analysed using the concept of Radiating Columns of buildings. The signal levels were measured using Wireless Network Optimising Drive Test Tool (E6474A of Agilent Technologies). The measurements were taken in reflected signal environment under usual fading conditions on actual GSM signals radiated from base stations. A mathematical model is derived from the measurements to predict the GSM signal levels in different floors. It was applied on three buildings and found that the predicted signal levels deviated from the measured levels with in +/- 2 dB for all floors. It is more accurate than the prediction models based on Floor Attenuation Factor. It can be used for planning proper indoor coverage in multi storey buildings.

Keywords: GSM air interface, nonlinear attenuation, multistory building, radiating columns, ground conduction and floor attenuation factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
3401 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
3400 Why do Clawback Provisions Affect Financial Reporting Quality? - An Analysis of Trigger Effects

Authors: Yu-Chun Lin

Abstract:

We identify clawback triggers from firms- proxy statements (Form DEF 14A) and use the likelihood of restatements to proxy for financial reporting quality. Based on a sample of 578 U.S. firms that voluntarily adopt clawback provisions during 2003-2009, when restatement-based triggers could be decomposed into two types: fraud and unintentional error, and we do observe the evidence that using fraud triggers is associated with high financial reporting quality. The findings support that fraud triggers can enhance deterrent effect of clawback provision by establishing a viable disincentive against fraud, misconduct, and otherwise harmful acts. These results are robust to controlling for the compensation components, to different sample specifications and to a number of sensitivity.

Keywords: Accruals quality, Clawback provisions, Compensation, Restatements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
3399 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
3398 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
3397 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3396 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
3395 A Quality-Oriented Approach toward Strategic Positioning in Higher Education Institutions

Authors: M. M. Mashhadi, K. Mohajeri, M. D. Nayeri

Abstract:

Positioning the organization in the strategic environment of its industry is one of the first and most important phases of the organizational strategic planning and in today knowledge-based economy has its importance been duplicated for higher education institutes as the centers of education, knowledge creation and knowledge worker training. Up to now, various models with diverse approaches have been applied to investigate organizations- strategic position in different industries. Regarding the essential importance and strategic role of quality in higher education institutes, in this study, a quality-oriented approach has been suggested to positioning them in their strategic environment. Then the European Foundation of Quality Management (EFQM) model has been adopted to position the top Iranian business schools in their strategic environment. The result of this study can be used in strategic planning of these institutes as well as the other Iranian business schools.

Keywords: Strategic planning, Strategic positioning, Quality, EFQM model, Higher education institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
3394 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water

Authors: Manjie Li, Xiangju Cheng, Yongcan Chen

Abstract:

With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.

Keywords: Assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
3393 Quality of Service in Multioperator GPON Access Networks with Triple-Play Services

Authors: Germán Santos-Boada, Jordi Domingo-Pascual

Abstract:

Recently, in some places, optical-fibre access networks have been used with GPON technology belonging to organizations (in most cases public bodies) that act as neutral operators. These operators simultaneously provide network services to various telecommunications operators that offer integrated voice, data and television services. This situation creates new problems related to quality of service, since the interests of the users are intermingled with the interests of the operators. In this paper, we analyse this problem and consider solutions that make it possible to provide guaranteed quality of service for voice over IP, data services and interactive digital television.

Keywords: GPON networks, multioperator, quality of service, triple-play services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3433
3392 Prediction of Load Capacity of Reinforced Concrete Corbels Strengthened with CFRP Sheets

Authors: Azad A. Mohammed, Gulan B. Hassan

Abstract:

Analytical procedure was carried out in this paper to calculate the ultimate load capacity of reinforced concrete corbels strengthened or repaired externally with CFRP sheets. Strut and tie method and shear friction method proposed earlier for analyzing reinforced concrete corbels were modified to incorporate the effect of external CFRP sheets bonded to the corbel. The points of weakness of any method that lead to an inaccuracy, especially when overestimating test results were checked and discussed. Comparison of prediction with the test data indicates that the ratio of test / calculated ultimate load is 0.82 and 1.17 using strut and tie method and shear friction method, respectively. If the limits of maximum shear stress is followed, the calculated ultimate load capacity using shear friction method was found to underestimates test data considerably.

Keywords: Corbel, Strengthening, Strut and Tie Model, Shear Friction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
3391 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction

Authors: Enas M. F. El Houby, Marwa S. Hassan

Abstract:

Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.

Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
3390 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
3389 Baking Quality of Hulled Wheat Species in Organic Farming

Authors: P. Konvalina, I. Capouchová, Z. Stehno

Abstract:

The organic farmers use wider range of crop varieties than the conventional farming. Bread wheat is the most favorite and the most common food crop. The organic bread wheat is usually of worse technological quality. Therefore, it is supposed to be an attractive alternative to the hulled wheat species (einkorn, emmer wheat and spelt). Twenty-five hulled bread wheat varieties and control bread wheat ones were grown on the certified organic parcel in České Budějovice (the Czech Republic) between 2009 and 2012. Their baking quality was measured and evaluated with standard methods, and in accordance with ICC. The results have shown that the grain of hulled wheat varieties contain a lot of proteins in grains (up to 18 percent); even the organic hulled bread wheat varieties are characterized by such good baking quality. Einkorn and emmer wheat are of worse technological quality of proteins (low values of gluten index and Zeleny test), which is a disadvantage of these two wheat species. On the other hand, spelt wheat is of better technological quality and is similar to the control bread wheat varieties. Mixtures consisting of bread wheat, among others, are considered good alternatives; they may contribute to wider range of use of the hulled wheat species. It is one of the possibilities which may increase the proportion of proteins in bread wheat grains; the nutrition-rich hulled wheat grains may be also used in such way at the same time.

Keywords: Baking quality, organic farming, einkorn, emmer wheat, spelt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
3388 A Novel Metric for Performance Evaluation of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, non-reference quality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
3387 Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil

Authors: M. Raciti Castelli, G. Grandi, E. Benini

Abstract:

This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.

Keywords: CFD, wind turbine, DU91-W2-250, laminar to turbulent transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
3386 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
3385 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289