Search results for: bio-inspired algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1508

Search results for: bio-inspired algorithms

1058 DACS3:Embedding Individual Ant Behavior in Ant Colony System

Authors: Zulaiha Ali Othman, Helmi Md Rais, Abdul Razak Hamdan

Abstract:

Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.

Keywords: Dynamic Ant Colony System (DACS), Traveling Salesmen Problem (TSP), Optimization, Swarm Intelligent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
1057 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1056 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure

Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin

Abstract:

Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.

Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
1055 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
1054 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
1053 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1052 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h0, pitch amplitude θ0, and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: Numerical simulation, flapping wing, energy extraction, power coefficient, energy extraction efficiency, RBF, NSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15
1051 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm

Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll

Abstract:

This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.

Keywords: Concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
1050 Dynamic Behavior of the Nanostructure of Load-bearing Biological Materials

Authors: M. Qwamizadeh, K. Zhou, Z. Zhang, YW. Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: Load-bearing biological materials, nanostructure, staggered structure, stress wave decay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
1049 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems

Authors: R. Sharma, M. Gopal

Abstract:

Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.

Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
1048 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
1047 Daemon- Based Distributed Deadlock Detection and Resolution

Authors: Z. RahimAlipour, A. T. Haghighat

Abstract:

detecting the deadlock is one of the important problems in distributed systems and different solutions have been proposed for it. Among the many deadlock detection algorithms, Edge-chasing has been the most widely used. In Edge-chasing algorithm, a special message called probe is made and sent along dependency edges. When the initiator of a probe receives the probe back the existence of a deadlock is revealed. But these algorithms are not problem-free. One of the problems associated with them is that they cannot detect some deadlocks and they even identify false deadlocks. A key point not mentioned in the literature is that when the process is waiting to obtain the required resources and its execution has been blocked, how it can actually respond to probe messages in the system. Also the question of 'which process should be victimized in order to achieve a better performance when multiple cycles exist within one single process in the system' has received little attention. In this paper, one of the basic concepts of the operating system - daemon - will be used to solve the problems mentioned. The proposed Algorithm becomes engaged in sending probe messages to the mandatory daemons and collects enough information to effectively identify and resolve multi-cycle deadlocks in distributed systems.

Keywords: Distributed system, distributed deadlock detectionand resolution, daemon, false deadlock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1046 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244
1045 An Efficient Algorithm for Computing all Program Forward Static Slices

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program backward slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. The existing algorithms for computing program slices are introduced to compute a slice at a program point. In these algorithms, the program, or the model that represents the program, is traversed completely or partially once. To compute more than one slice, the same algorithm is applied for every point of interest in the program. Thus, the same program, or program representation, is traversed several times. In this paper, an algorithm is introduced to compute all forward static slices of a computer program by traversing the program representation graph once. Therefore, the introduced algorithm is useful for software engineering applications that require computing program slices at different points of a program. The program representation graph used in this paper is called Program Dependence Graph (PDG).

Keywords: Program slicing, static slicing, forward slicing, program dependence graph (PDG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
1044 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
1043 Efficient HAAR Wavelet Transform with Embedded Zerotrees of Wavelet Compression for Color Images

Authors: S. Piramu Kailasam

Abstract:

This study is expected to compress true color image with compression algorithms in color spaces to provide high compression rates. The need of high compression ratio is to improve storage space. Alternative aim is to rank compression algorithms in a suitable color space. The dataset is sequence of true color images with size 128 x 128. HAAR Wavelet is one of the famous wavelet transforms, has great potential and maintains image quality of color images. HAAR wavelet Transform using Set Partitioning in Hierarchical Trees (SPIHT) algorithm with different color spaces framework is applied to compress sequence of images with angles. Embedded Zerotrees of Wavelet (EZW) is a powerful standard method to sequence data. Hence the proposed compression frame work of HAAR wavelet, xyz color space, morphological gradient and applied image with EZW compression, obtained improvement to other methods, in terms of Compression Ratio, Mean Square Error, Peak Signal Noise Ratio and Bits Per Pixel quality measures.

Keywords: Color Spaces, HAAR Wavelet, Morphological Gradient, Embedded Zerotrees Wavelet Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
1042 Minimal Spanning Tree based Fuzzy Clustering

Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi

Abstract:

Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.

Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
1041 Adaptive Non-linear Filtering Technique for Image Restoration

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil

Abstract:

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
1040 FPGA Based Parallel Architecture for the Computation of Third-Order Cross Moments

Authors: Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary, Ateeq Ahmad Khan

Abstract:

Higher-order Statistics (HOS), also known as cumulants, cross moments and their frequency domain counterparts, known as poly spectra have emerged as a powerful signal processing tool for the synthesis and analysis of signals and systems. Algorithms used for the computation of cross moments are computationally intensive and require high computational speed for real-time applications. For efficiency and high speed, it is often advantageous to realize computation intensive algorithms in hardware. A promising solution that combines high flexibility together with the speed of a traditional hardware is Field Programmable Gate Array (FPGA). In this paper, we present FPGA-based parallel architecture for the computation of third-order cross moments. The proposed design is coded in Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) and functionally verified by implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. Implementation results are presented and it shows that the proposed design can operate at a maximum frequency of 86.618 MHz.

Keywords: Cross moments, Cumulants, FPGA, Hardware Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1039 WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

Authors: Haluk Gümüskaya, Hüseyin Hakkoymaz

Abstract:

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

Keywords: Indoor location determination and tracking, positioning in Wireless LAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
1038 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
1037 Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways

Authors: Gianluigi De Mare, Tony Leopoldo Luigi Lenza, Rino Conte

Abstract:

The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.

Keywords: Impact, compensation for financial loss, depreciation of property, railway network design, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1036 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: GIS, Outliers, PSO, Traffic Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
1035 Dynamic Traffic Simulation for Traffic Congestion Problem Using an Enhanced Algorithm

Authors: Wong Poh Lee, Mohd. Azam Osman, Abdullah Zawawi Talib, Ahmad Izani Md. Ismail

Abstract:

Traffic congestion has become a major problem in many countries. One of the main causes of traffic congestion is due to road merges. Vehicles tend to move slower when they reach the merging point. In this paper, an enhanced algorithm for traffic simulation based on the fluid-dynamic algorithm and kinematic wave theory is proposed. The enhanced algorithm is used to study traffic congestion at a road merge. This paper also describes the development of a dynamic traffic simulation tool which is used as a scenario planning and to forecast traffic congestion level in a certain time based on defined parameter values. The tool incorporates the enhanced algorithm as well as the two original algorithms. Output from the three above mentioned algorithms are measured in terms of traffic queue length, travel time and the total number of vehicles passing through the merging point. This paper also suggests an efficient way of reducing traffic congestion at a road merge by analyzing the traffic queue length and travel time.

Keywords: Dynamic, fluid-dynamic, kinematic wave theory, simulation, traffic congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
1034 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram

Authors: V Krishnaveni, S Jayaraman, K Ramadoss

Abstract:

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1033 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
1032 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
1031 Secure Socket Layer in the Network and Web Security

Authors: Roza Dastres, Mohsen Soori

Abstract:

In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.

Keywords: Secure Socket Layer, Security of networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525
1030 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem

Abstract:

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
1029 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565