
  
Abstract—Ants are fascinating creatures that demonstrate the 

ability to find food and bring it back to their nest. Their ability as a 
colony, to find paths to food sources has inspired the development of 
algorithms known as Ant Colony Systems (ACS). The principle of 
cooperation forms the backbone of such algorithms, commonly used 
to find solutions to problems such as the Traveling Salesman 
Problem (TSP). Ants communicate to each other through chemical 
substances called pheromones. Modeling individual ants’ ability to 
manipulate this substance can help an ACS find the best solution. 
This paper introduces a Dynamic Ant Colony System with three-
level updates (DACS3) that enhance an existing ACS.  Experiments 
were conducted to observe single ant behavior in a colony of 
Malaysian House Red Ants. Such behavior was incorporated into the 
DACS3 algorithm. We benchmark the performance of DACS3 versus 
DACS on TSP instances ranging from 14 to 100 cities. The result 
shows that the DACS3 algorithm can achieve shorter distance in 
most cases and also performs considerably faster than DACS. 

 
Keywords—Dynamic Ant Colony System (DACS), Traveling 

Salesmen Problem (TSP), Optimization, Swarm Intelligent.  

I. INTRODUCTION 
ODAY’S business environment is increasingly complex 
and dynamic, with substantial flexibility required in 

operations.  This is especially true of the logistics and 
transportation industry, where the need to deliver on time and 
to fulfill changes in customer requests makes it important to 
find the shortest paths for a delivery route. People, as we 
know, have a reduced ability to see the overall problem, 
particularly when the problem is relatively complex in term of 
its size and constraints. However, this inability can be 
overcome with the help of certain advanced optimization 
methods, which can aid humans in expediting the process. 

The Ant Colony System (ACS) is the most successful 
algorithm used in combinatorial optimization problems such 
as the Traveling Salesman Problem (TSP), Vehicle Routing 
Problem (VRP), Job-Shop Scheduling Problem (JSP), and 
Quadratic Assignment Problem (QAP). The algorithm is 
inspired by the foraging behavior of a colony of ants, which, 
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communicate through chemical substances called pheromones, 
acting as a memory preservation mechanism and providing 
guidance for ants in searching for shortest paths.  

The principle of cooperation is the backbone of these 
algorithms. However, observing the behavior of a single ant 
can add value to the principle. Manipulating pheromone 
substances is a simple addition that can help to find the best 
solution. Therefore, many versions of ACS algorithms have 
been produced to find the shortest path by using the principle 
of cooperation among the ants. This study looks at individual 
ants’ behavior in trying to reconnect paths previously laid by 
the colony when an obstacle is placed on such paths. Such 
blockages add another level of pheromone updates, which 
could contribute to faster optimum solutions.  

This paper concentrates on an improvement of an ACS 
applied to the TSP domain, as first presented by Marco 
Dorigo [1]. The problem is to find the shortest tour of all the 
cities, where all cities are connected to each other, and visiting 
each city only once. This paper is divided into several 
sections. Section 2 discusses the previous experiments that 
generated the ACS concepts, along with the current 
observations of a single ant that inspired improvements in the 
ACS. Even though various versions of ACS have been 
invented which produce the shortest distance benchmark, the 
algorithm does not yet perform well for all datasets. Section 3 
reviews the pass researches on ant colony algorithm. Section 4 
presents the DACS3 model and its algorithm. Section 5 
explains the setup for experimental comparison of the 
algorithms, and section 6 presents and discusses the results of 
DACS3 versus DACS. 

II. ANT BEHAVIORS 
Nature is a good source of solutions to problems faced by 

humans. Ants provide a good example for the case of 
transporting goods or finding shortest paths. Ants are social 
insects which cooperate through group communication, laying 
down chemical substances called pheromones to mark 
locations that have already been visited. The pheromones also 
serve as a reference for the return route back to their nest. 
These pheromones are then used by other ants as an indicator 
of the best path between the nest and food sources. The 
amount of pheromone laid determines whether the path is 
desirable to be taken by others; higher pheromone levels 
indicate more desirable routes. 

Research on social insects began in the early nineteenth 
century, when the South African scientist Eugene Marais 
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focused his attention on the behavior of termites, which he 
refers to as White Ants in his published work. His work was 
then picked up by Konrad Lorenz in his studies of imprinting 
and instinctive behavior of termites. Although both scientists 
are considered to be pioneers in the field of Ethology, the 
scientific studies of animal behavior, they were unaware of the 
actual mechanics of termite communication [22]. The answer 
to this question was discovered in the 1940s and 1950s when a 
French Entomologist named Pierre Paul Grasse investigated 
how termites communicate. He discovered that social insects 
react to significant stimuli, a signal which activates genetically 
encoded reactions called “stigmergy”, which was a type of 
indirect communication that “workers stimulated by the 
performance they achieved” [9]. The characteristics of 
stigmergy were also found in J. L. Deneubourg et al’s single 
and double bridge experiments on Argentine Ants, where they 
studied the pheromones laying and following behavior of ants 
[10].  

Margo Dorigo et al. applied the results of these experiments 
to artificial ants, basing his work on ethologist studies that 
found ants established shortest paths based on pheromone 
trails. He took it one step further to study the random 
movement of ants, which he referred to as autocatalytic 
behavior, where ants move at random, detect an existing trail, 
decide to follow, and then re-enforce by laying down its own 
pheromones. Autocatalytic behavior is a process of positive 
and negative feedback, or pheromone reinforcement and 
evaporation, that causes very rapid convergence [1][8]. Figure 
1 shows the experimental setup of Marco Dorigo, where an 
obstacle was placed in the path of multiple ants. 

 

 
 

Fig. 1 Obstacle Experiment 
 
The principle of cooperation among swarm insects is that 

communication among individuals contributes to the survival 
of the group as a whole. We have conducted several 
experiments to various colonies of “Malaysian House Red 
Ants” by using the experimental method of Marco Dorigo. An 
object or obstacle is placed on a single ant’s normal path to 
find out how it behaves [23]. The experiment is conducted at a 
time when there are not many ants in the colony, normally late 
at night. Figure 2 shows ant behavior in constructing its paths. 
An ant travels along its normal path, Point A → Point B, 
following the strategic rules set out by the pheromones. When 
we put an obstacle in its path, the ant begins to search for an 
alternative route. It begins by examining both edges of the 

obstacle several times. Once it chooses a shorter edge to 
continue along, it begins to set up the path by visiting the 
shorter edge point d from point c, then tries to find a point e 
which returns to the existing trail. Once it does so, reinforces 
the newly constructed path by revisiting (c,d,e) several times. 

 

 
Fig. 2 Single Ant Obstacle Experiment 

 
Once the new alternative path has received enough 

reinforcement, the ant then continues its journey using the 
path that existed before the obstruction. However, after some 
distance, it returns to the point c, where it restarts its journey 
and continues to reinforce the remaining path several times. 
From our observation, we concluded that to construct paths or 
a tour, there are three events involved: one event for path 
construction and two events for trail reinforcement. 

III. ANT COLONY OPTIMIZATION  
Ant System (AS) was first introduced and applied to TSP 

by Marco Dorigo et. al. [1], [2]. Initially, ants were placed on 
n cities and it moves from city r to city s using probabilistic 
formula called random-proportional rules [1] using Euclidean 
distance. After all ants have completed a tour, the pheromone 
level on all edges would be updated using local pheromone 
updating rule [2].   

Later, Luca Maria Gambardella and his colleague have 
modified the AS algorithm and introduced ACS where it 
provides more balance and guidance in searching in three 
different ways. Firstly, the state transition rules (pseudo-
random proportional action choice rules), provides a direct 
way to balance between an exploration of new edges and 
exploitation of a priori. Secondly, only edges that belong to 
the best ant tour being allowed to do pheromone updates 
through global pheromone updating rule and finally, local 
pheromone updating rule is applied while ants are trying to 
construct a solution [2], [6], [7]. Generally the basic idea was 
that the ants modified the pheromone level using local 
pheromone updating rule shown in (1) on the visited edges 
while constructing a solution after a series of choice selection 
on edges through decision making rule. After all ants have 
constructed a tour, it will then performed a second update 
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using global pheromone updating rule [3] following edges that 
belong to only one best solution which produces the shortest 
tour from the beginning of the trial. Lmn is a tour length 
produced by nearest neighbour heuristic and n is the total 
number of cities. 

 

           
( ) ( ) ( )

( )nL

psrpsr

mn ./1   where

.,.1,

0

0

=Δ

Δ+−←

τ

τττ
                 (1) 

 
Stutzle and Hoos considers development done on ACS 

when developing MMAS but it is a direct improvement from 
AS [14]. MMAS is different in three ways [3], [21]. The first 
improvement is only one ant would update the pheromone 
which is the model of ACS but it could choose whether to 
update on solution of the current iteration or following the 
global best solution. Secondly, the pheromone strength was to 
be bounded to upper and lower limit [tmax, tmin] in order to 
avoid search stagnation. Lastly, the initial value for 
pheromone strength was initializing to tmax which was 
intended to provide a higher search exploration of solution at 
the beginning of the algorithm runs. The basic idea was that 
by allowing ants to update the pheromone level considering 
the solution on iteration to iteration basis (preferred choice) 
would guarantee more pheromone activities which constitutes 
an improve of searching performance. Nonetheless, the 
initialization of the pheromone level to the highest would 
encourage more exploration activities but it was limited to its 
boundaries where it would ensure that pheromone information 
is limited to its trails and not allows it to be too intensified or 
completely lost. When MMAS is close to convergence, one 
mechanism called pheromone trail smoothing (PTS) was used 
that helps increases pheromone trails proportionally to the 
maximum pheromone trails limit. The advantage of the 
mechanism is that, the information gathered during the run is 
not completely lost but merely weakened. This mechanism is 
interesting to be used when a long run is allowed.  

Yi and Gong [3] have also proposed an algorithm which is 
a direct improvement of AS but considering improvement 
made to ACS and MMAS by introducing dynamic decay 
parameter to avoid the pheromone level growing too high and 
reaches local optima. With the theory that, pheromone 
evaporate quickly when it is intensified and less quickly when 
they are faint, the dynamic decay parameter was applied in 
both pheromone updates such as local pheromone updating 
rule and global pheromone updating rule [3]. They are also 
trying to accelerate the solution computation by allowing the 
best and worst tour done by ants to do pheromone update.  

Beside the basic concepts, there are several strategies that 
have been adopted by ACO algorithms in order to find better 
solution quality and/or to achieve better performance such as 
candidate list, don’t look bit and tour improvement heuristics. 

 

IV.  DYNAMIC ANT COLONY SYSTEM 3 LEVEL UPDATES 
(DACS3) 

DACS3 considers the basic concepts introduced in ACS 
and DACS. However, we apply individual ant behavior as 
presented in Fig. 2, so DACS3 differs from previous systems 
in three ways. First, capturing all knowledge from the group 
and updating the pheromone level once the knowledge 
becomes available would expedite the process and increase 
the chances of finding a better solution. Second, a dynamic 
penalty on worst tours would open up chances for ants to 
navigate, limiting intentions and providing caution in an ant’s 
decision to move. Finally, we get better search guidance by 
concentrating only on the best tours from all group 
performances, subdividing the group into two sections and 
then applying the global pheromone updating rule. Fig. 3 
shows the workflow of the DACS3 model. 

 
Fig. 3 DACS3 Diagram 

 
In local construction phase, all cities shall be considered as 

a starting city r to start a tour computation. However, city r 
would not be considered as a visited city at the beginning of 
each tour construction. Thus, it constitutes a random start. 
Every ant would have to make a complete tour and the 
decision to choose which city s to move would be provided by 
state transition rules as use in [2]. Every time an ant visits a 
city s, it will modify the pheromone level by using local 
pheromone updating rule (1). The reason why we used ACS 
version of local pheromone updating rule because we believed 
that when an ant moves to a new location or ventures into the 
unknown territories, it would provides a constant pheromone 
deposit and evaporates at static state. 

Once all ants in the group completed a tour, the available 
knowledge of every member of the group will then be used to 
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modify the pheromone level using the intermediate 
pheromone updating rule (2) in local re-enforcement phase. 
The updates are necessary before all ants in the group been 
given a new task to complete. In this phase, the dynamic 
decay parameter will be used because it helps to alleviate an 
early stagnation or helps reducing the possibility of 
pheromone growing too high. 

 
      ( ) ( )[ ]( ) ( ) Csrsrpsr Δ+−← ,.,.1, τττ                     (2) 

 
where 
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( )⎪⎩

⎪
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L

L
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All current completed tours in the group will be compared 

to the group best tour in the current iteration and the group 
worst tour from the beginning of trial. If no match found, the 
edges would experience normal dynamic evaporation. This 
method will appreciate every effort the ants make to produce 
the best tour but depreciate the worst tour from group 
performances. Dynamic penalty ( )[ ]srp ,.τ  is used to caution all 
ants of the bad paths when later it tries to make a decision to 
move on the next tour. Lgrb is the total distance of the best tour 
in the current iteration and Lgrw is the total distance of the 
worst tour of the group from the beginning of the trial.  

The pheromone level once again will be modified using 
global pheromone updating rule (3) which is subdivided into 
two categories, best of the best and worst of the best. Only the 
best tour from the group performance will be considered for 
the pheromone update. If no match found, the edges would 
experience a normal dynamic evaporation. This method will 
provide better searching guidance in the effort to search for 
better solution. 

 
( ) ( )[ ]( ) ( ) Csrsrpsr Δ+−← ,.,.1, τττ                   (3)  

 
where 
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Lgb is the total distance of the globally best tour (best of the 
best) and Lgw is the total distance of globally worst tour (worst 
of the best) from the beginning of the trial. Fig. 4 shows how 
the DACS3 algorithm works. In this algorithm, we do not 
apply any additional strategic techniques or tour improvement 
heuristics. 

 
Fig. 4 DACS3 Algorithm 

V. THE EXPERIMENTAL SETUP 
The algorithm was tested using several datasets taken from 

TSPLIB. The algorithm was developed using C language. 
Testing was performed on a machine with an Intel Core Duo 
1.86GHz processor with 1 gigabyte of physical memory. The 
testing used a normal round up method (≥0.5 = 1) to calculate 
integer distances. This provides a more meaningful value than 
the bankers’ roundup method. Several ant population sizes 
were tested in order to determine the best number of ants for 
the data. There are two types of datasets being tested: 
Euclidean distance (Oliver30, Berlin52, KroC100) and GEO 
distance (Burma14).   

The experiments sought to determine which algorithms 
could reach optimal distance; if all tested algorithms were able 
to find it, then performance speed would be the second 
measurement. For comparison, the first column is the best 

if (r,s) ∈  Global Best Tour 
if (r,s) ∈  Global Worst Tour 
if (r,s) ∈  Others 

GlobalBestTour = ∞; 
GlobalWorstTour = 0; 
LocalGroupWorstTour = 0; 
Initialize pheromone level for all cities =τ 0; 
Generate initial solution using Nearest Neighbor (NN) heuristic; 
CPU timer starts;  
/* Trial begins */ 
Do 
     /* Iteration begins */ 
     If i <= n 
          LocalGroupBestTour = ∞; 
          For k = 1 to m 
               Start city = i; 
               Do 
                    Select the next city j; 
                           /*Perform Local Pheromone Update*/ 
                      Update trail level τ ij;                                                      (Rule (1)) 
               While (until all cities visited) 
          EndFor 
          /*Perform Intermediate Pheromone Update*/ 
          For k = 1 to m 
               Compute tour distance; 
               If (tour distance < LocalGroupBestTour) 
                    LocalGroupBest = current solution; 
               Else if (tour distance > LocalGroupWorstTour) 
                     LocalGroupWorst = current solution; 
               Else 
                     /*Pheromone updates for others*/ 
                     Update trail level τ ij;                                                     (Rule (2)) 
               EndIf 
               /*Pheromone updates for LocalGroupBest 
               &  LocalGroupWorst*/ 
               Update trail level τ ij  for LocalGroupBest;                          (Rule (2)) 
               Update trail level  τ ij  for LocalGroupWorst;                      (Rule (2)) 
          EndFor 
     EndIf 
     /*Perform Global Pheromone Update*/ 
     Compute tour distance of LocalGroupBest 
     If (tour distance < GlobalBestTour) 
          GlobalBest = LocalGroupBest; 
     Else if (tour distance > GlobalWorstTour) 
          GlobalWorst = LocalGroupBest; 
     Else 
          /*Pheromone updates for others*/ 
          Update trail level τ ij;                                                               (Rule (3)) 
     EndIf 
     /*Pheromone updates for GlobalBest & GlobalWorst*/ 
     Update trail level  τ ij for GlobalBest;                                            (Rule (3)) 
     Update trail level  τ ij for GlobalWorst;                                         (Rule (3)) 
While (until all termination statements satisfied) 

if (r,s) ∈  Local Group Best Tour 

if (r,s) ∈  Local Group Worst Tour 
if (r,s) ∈  Others 
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distance from the beginning of the trail, as compared to the 
benchmark distance. The second column shows the number of 
iteration required to come up with the best distance. The third 
column is the best time obtained from 15 trials. The fourth 
column is an average time from 15 trials. Distance was 
measured by the integer distance (the roundup distance from 
each moves) and the real distance (in the bracket). The value 
is measured in Euclidean and GEO distances. Real distance 
was used as a measurement in calculating distances for 
Euclidean datasets, while integer distance was used as the 
basis of the distance calculation for GEO datasets. Table I 
shows the best parameter settings for the DACS3 experiment, 
which is a similar setup from previous work on the ACS and 
DACS algorithms [1] [2] [3] [6] [7]. 

 
TABLE I 

DACS3 PARAMETERS SETTING 
 
 
 
 
 

 
 

VI. RESULT AND DISCUSSION 
Table IIA and IIB shows the experimental result of DACS3 

compared to DACS. DACS3 has reached the optimal 
benchmark distance for most of the case studies accept for 
KroC100, but the difference is very small (0.6%). DACS only 
reach the optimal benchmark distance for Oliver30 and 
Burma14 data. DACS produces 4.4% and 2.1% longer of 
shortest distance for Berlin52 and KroC100 datasets 
respectively. In term of performance time to get solution for 
those algorithms which achieved the same optimal distance, 
DACS3 has performed 90% and 75% faster compare to 
DACS for Oliver30 and Burma14.   

 
TABLE IIA  

DACS3 RESULT COMPARISON TO BENCHMARK 
DACS3 (β=2, q0=0.9, p=0.1) – m=10 

TSP  
Problem 

Bench- 
mark 

Distance 
Best  

Distance 
Best 

Iteration 

Best 
Time 
(Sec) 

Average 
Time 
(Sec) 

Oliver30 
(30-city 
problem) 

420 
(423.74) 

420 
(423.74) 168 7.000 7.043 

Berlin52 
(52-city 

problem) 

7542 
(N/A) 

7542 
(7544.37) 6447 1278.407 1278.590 

KroC100 
(100-city 
problem) 

20749 
(N/A) 

20880 
(20881.61

) 
7954 10854.40

7 10856.385 

Burma14 
(14-city 

problem) 

3323 
(N/A) 

3323 
(3330.61) 94 0.953 1.003 

 
 

TABLE IIB  
DACS RESULT COMPARISON TO BENCHMARK 

DACS (β=2, q0=0.9, p=0.1) – m=10 
TSP  

Problem 

Bench 
mark 

Distance 
Best  

Distance 
Best 

Iteration 

Best 
Time 
(Sec) 

Average 
Time 
(Sec) 

Oliver30
(30-city 
problem) 

420 
(423.74) 1826 71.484 71.582 420 

(423.74) 

Berlin52
(52-city 

problem) 

7881 
(7880.78) 3661 694.594 694.835 7881 

(7880.78) 

KroC100
(100-city 
problem) 

21190 
(21191.37) 1720 2240.984 2242.229 21190 

(21191.37) 

Burma14
(14-city 

problem) 

3323 
(3330.61) 527 4.766 4.823 3323 

(3330.61) 

 
The result shows that DACS3 has produced shorter distance 

for all case studies but perform a bit longer time to get 
solution for bigger data. However, DACS3 outperformed 
DACS algorithm in all cases. 

Fig 5(a)-(d) shows the log graphs of shortest distance 
versus iterations. The comparison is done between DACS3 
and DACS for datasets Burma14, Oliver30, Berlin52 and 
KroC100. DACS3 has obtained good searching performance 
when small size problem (Burma14 and Oliver30) involved. 
This is shown by the fact that DACS3 has outperforms other 
algorithms throughout the run. However, when DACS3 
searches for solutions for slightly bigger problems (Berlin50 
and KroC100), it performs poorly at the beginning of the 
search but produces good performance in the middle and end 
of the run. 

 

Algorithm Comparison
Burma14 (14 cities problem)

3250

3350

3450

3550

3650

0 500 1000
Iterations

G
eo

 D
is

ta
nc

e

Log. (DACS3) Log. (DACS)

 
 

Fig.5 (a) Log graph algorithm comparison for Burma14 problem 

Parameters Value 
Ants Population Size (m) 10 

0q  0.9 
β  2 
p  0.1 

Max Iterations 10000 
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Algorithm Comparison
Oliver30 (30 cities problem)
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Fig. 5(b) Log graph algorithm comparison for Oliver30 problem 
 

Algorithm Comparison
Berlin52 (52 cities problem)
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Fig. 5(c) Log graph algorithm comparison for Berlin52 problem 
 

Algorithm Comparison
KroC100 (100 cities problem)
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Fig. 5 (d) Log graph algorithm comparison for KroC100 problem  

VII. CONCLUSION AND FURTHER RESEARCH 
Based on the result stated above, we can concludes that 

manipulating and empowering the available knowledge of the 
individuals can provide a significant advantage in order to 
solve the whole perspective of the problem. Harnessing 
experiences of every single individual and in this case, the 
ants, can expedite the process of finding a good or better 
solution either shorter distance or/and performance time to get 
solution. Based on the graph we can see that DACS3 has an 
outstanding searching performance for smaller data but 
slightly poor at the beginning of the search for bigger data but 
outperformed every algorithm at the middle of the run. 
Therefore, the next step is to optimise the iteration process in 
DACS3 using various strategic techniques such as candidate 

list, pheromone trails smoothing (PTS), and the elitist ant 
concepts. 
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