

Abstract—Ants are fascinating creatures that demonstrate the

ability to find food and bring it back to their nest. Their ability as a
colony, to find paths to food sources has inspired the development of
algorithms known as Ant Colony Systems (ACS). The principle of
cooperation forms the backbone of such algorithms, commonly used
to find solutions to problems such as the Traveling Salesman
Problem (TSP). Ants communicate to each other through chemical
substances called pheromones. Modeling individual ants’ ability to
manipulate this substance can help an ACS find the best solution.
This paper introduces a Dynamic Ant Colony System with three-
level updates (DACS3) that enhance an existing ACS. Experiments
were conducted to observe single ant behavior in a colony of
Malaysian House Red Ants. Such behavior was incorporated into the
DACS3 algorithm. We benchmark the performance of DACS3 versus
DACS on TSP instances ranging from 14 to 100 cities. The result
shows that the DACS3 algorithm can achieve shorter distance in
most cases and also performs considerably faster than DACS.

Keywords—Dynamic Ant Colony System (DACS), Traveling

Salesmen Problem (TSP), Optimization, Swarm Intelligent.

I. INTRODUCTION
ODAY’S business environment is increasingly complex
and dynamic, with substantial flexibility required in

operations. This is especially true of the logistics and
transportation industry, where the need to deliver on time and
to fulfill changes in customer requests makes it important to
find the shortest paths for a delivery route. People, as we
know, have a reduced ability to see the overall problem,
particularly when the problem is relatively complex in term of
its size and constraints. However, this inability can be
overcome with the help of certain advanced optimization
methods, which can aid humans in expediting the process.

The Ant Colony System (ACS) is the most successful
algorithm used in combinatorial optimization problems such
as the Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP), Job-Shop Scheduling Problem (JSP), and
Quadratic Assignment Problem (QAP). The algorithm is
inspired by the foraging behavior of a colony of ants, which,

Zulaiha Ali Othman is with the Centre of Artificial Intelligent, Faculty of

Information Science and Technology, National University of Malaysia
(phone: 603-89216754; fax: 603-89216184; e-mail: zao@ftsm.ukm.my).

Helmi Md Rais is with the Department of System Science and
Management, Faculty of Information Science and Technology, National
University of Malaysia (e-mail: mubin7677@yahoo.com).

Abdul Razak Hamdan is with the Centre of Artificial Intelligent, Faculty of
Information Science and Technology, National University of Malaysia (e-
mail: arh@ftsm.ukm.my).

communicate through chemical substances called pheromones,
acting as a memory preservation mechanism and providing
guidance for ants in searching for shortest paths.

The principle of cooperation is the backbone of these
algorithms. However, observing the behavior of a single ant
can add value to the principle. Manipulating pheromone
substances is a simple addition that can help to find the best
solution. Therefore, many versions of ACS algorithms have
been produced to find the shortest path by using the principle
of cooperation among the ants. This study looks at individual
ants’ behavior in trying to reconnect paths previously laid by
the colony when an obstacle is placed on such paths. Such
blockages add another level of pheromone updates, which
could contribute to faster optimum solutions.

This paper concentrates on an improvement of an ACS
applied to the TSP domain, as first presented by Marco
Dorigo [1]. The problem is to find the shortest tour of all the
cities, where all cities are connected to each other, and visiting
each city only once. This paper is divided into several
sections. Section 2 discusses the previous experiments that
generated the ACS concepts, along with the current
observations of a single ant that inspired improvements in the
ACS. Even though various versions of ACS have been
invented which produce the shortest distance benchmark, the
algorithm does not yet perform well for all datasets. Section 3
reviews the pass researches on ant colony algorithm. Section 4
presents the DACS3 model and its algorithm. Section 5
explains the setup for experimental comparison of the
algorithms, and section 6 presents and discusses the results of
DACS3 versus DACS.

II. ANT BEHAVIORS
Nature is a good source of solutions to problems faced by

humans. Ants provide a good example for the case of
transporting goods or finding shortest paths. Ants are social
insects which cooperate through group communication, laying
down chemical substances called pheromones to mark
locations that have already been visited. The pheromones also
serve as a reference for the return route back to their nest.
These pheromones are then used by other ants as an indicator
of the best path between the nest and food sources. The
amount of pheromone laid determines whether the path is
desirable to be taken by others; higher pheromone levels
indicate more desirable routes.

Research on social insects began in the early nineteenth
century, when the South African scientist Eugene Marais

DACS3:Embedding Individual Ant Behavior in
Ant Colony System

Zulaiha Ali Othman, Helmi Md Rais, and Abdul Razak Hamdan

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1225International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

focused his attention on the behavior of termites, which he
refers to as White Ants in his published work. His work was
then picked up by Konrad Lorenz in his studies of imprinting
and instinctive behavior of termites. Although both scientists
are considered to be pioneers in the field of Ethology, the
scientific studies of animal behavior, they were unaware of the
actual mechanics of termite communication [22]. The answer
to this question was discovered in the 1940s and 1950s when a
French Entomologist named Pierre Paul Grasse investigated
how termites communicate. He discovered that social insects
react to significant stimuli, a signal which activates genetically
encoded reactions called “stigmergy”, which was a type of
indirect communication that “workers stimulated by the
performance they achieved” [9]. The characteristics of
stigmergy were also found in J. L. Deneubourg et al’s single
and double bridge experiments on Argentine Ants, where they
studied the pheromones laying and following behavior of ants
[10].

Margo Dorigo et al. applied the results of these experiments
to artificial ants, basing his work on ethologist studies that
found ants established shortest paths based on pheromone
trails. He took it one step further to study the random
movement of ants, which he referred to as autocatalytic
behavior, where ants move at random, detect an existing trail,
decide to follow, and then re-enforce by laying down its own
pheromones. Autocatalytic behavior is a process of positive
and negative feedback, or pheromone reinforcement and
evaporation, that causes very rapid convergence [1][8]. Figure
1 shows the experimental setup of Marco Dorigo, where an
obstacle was placed in the path of multiple ants.

Fig. 1 Obstacle Experiment

The principle of cooperation among swarm insects is that

communication among individuals contributes to the survival
of the group as a whole. We have conducted several
experiments to various colonies of “Malaysian House Red
Ants” by using the experimental method of Marco Dorigo. An
object or obstacle is placed on a single ant’s normal path to
find out how it behaves [23]. The experiment is conducted at a
time when there are not many ants in the colony, normally late
at night. Figure 2 shows ant behavior in constructing its paths.
An ant travels along its normal path, Point A → Point B,
following the strategic rules set out by the pheromones. When
we put an obstacle in its path, the ant begins to search for an
alternative route. It begins by examining both edges of the

obstacle several times. Once it chooses a shorter edge to
continue along, it begins to set up the path by visiting the
shorter edge point d from point c, then tries to find a point e
which returns to the existing trail. Once it does so, reinforces
the newly constructed path by revisiting (c,d,e) several times.

Fig. 2 Single Ant Obstacle Experiment

Once the new alternative path has received enough

reinforcement, the ant then continues its journey using the
path that existed before the obstruction. However, after some
distance, it returns to the point c, where it restarts its journey
and continues to reinforce the remaining path several times.
From our observation, we concluded that to construct paths or
a tour, there are three events involved: one event for path
construction and two events for trail reinforcement.

III. ANT COLONY OPTIMIZATION
Ant System (AS) was first introduced and applied to TSP

by Marco Dorigo et. al. [1], [2]. Initially, ants were placed on
n cities and it moves from city r to city s using probabilistic
formula called random-proportional rules [1] using Euclidean
distance. After all ants have completed a tour, the pheromone
level on all edges would be updated using local pheromone
updating rule [2].

Later, Luca Maria Gambardella and his colleague have
modified the AS algorithm and introduced ACS where it
provides more balance and guidance in searching in three
different ways. Firstly, the state transition rules (pseudo-
random proportional action choice rules), provides a direct
way to balance between an exploration of new edges and
exploitation of a priori. Secondly, only edges that belong to
the best ant tour being allowed to do pheromone updates
through global pheromone updating rule and finally, local
pheromone updating rule is applied while ants are trying to
construct a solution [2], [6], [7]. Generally the basic idea was
that the ants modified the pheromone level using local
pheromone updating rule shown in (1) on the visited edges
while constructing a solution after a series of choice selection
on edges through decision making rule. After all ants have
constructed a tour, it will then performed a second update

Blockade

c (stop)

d (edge)

e (restart)

Point A

Point B

Existing trail

Remaining trail

Reenforcing
Trail

Reenforcing
Trail

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1226International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

Best Tour

All
Tours

Move

Local Search
(Optional)

Local Update

Cities ParametersAnts

Intermediate Update

Global Update

Local
Construction
Phase

Next
Location

Global Re-
enforcement
Phase

Solution

Local Re-
enforcement
Phase

using global pheromone updating rule [3] following edges that
belong to only one best solution which produces the shortest
tour from the beginning of the trial. Lmn is a tour length
produced by nearest neighbour heuristic and n is the total
number of cities.

() () ()

()nL

psrpsr

mn ./1 where

.,.1,

0

0

=Δ

Δ+−←

τ

τττ
 (1)

Stutzle and Hoos considers development done on ACS

when developing MMAS but it is a direct improvement from
AS [14]. MMAS is different in three ways [3], [21]. The first
improvement is only one ant would update the pheromone
which is the model of ACS but it could choose whether to
update on solution of the current iteration or following the
global best solution. Secondly, the pheromone strength was to
be bounded to upper and lower limit [tmax, tmin] in order to
avoid search stagnation. Lastly, the initial value for
pheromone strength was initializing to tmax which was
intended to provide a higher search exploration of solution at
the beginning of the algorithm runs. The basic idea was that
by allowing ants to update the pheromone level considering
the solution on iteration to iteration basis (preferred choice)
would guarantee more pheromone activities which constitutes
an improve of searching performance. Nonetheless, the
initialization of the pheromone level to the highest would
encourage more exploration activities but it was limited to its
boundaries where it would ensure that pheromone information
is limited to its trails and not allows it to be too intensified or
completely lost. When MMAS is close to convergence, one
mechanism called pheromone trail smoothing (PTS) was used
that helps increases pheromone trails proportionally to the
maximum pheromone trails limit. The advantage of the
mechanism is that, the information gathered during the run is
not completely lost but merely weakened. This mechanism is
interesting to be used when a long run is allowed.

Yi and Gong [3] have also proposed an algorithm which is
a direct improvement of AS but considering improvement
made to ACS and MMAS by introducing dynamic decay
parameter to avoid the pheromone level growing too high and
reaches local optima. With the theory that, pheromone
evaporate quickly when it is intensified and less quickly when
they are faint, the dynamic decay parameter was applied in
both pheromone updates such as local pheromone updating
rule and global pheromone updating rule [3]. They are also
trying to accelerate the solution computation by allowing the
best and worst tour done by ants to do pheromone update.

Beside the basic concepts, there are several strategies that
have been adopted by ACO algorithms in order to find better
solution quality and/or to achieve better performance such as
candidate list, don’t look bit and tour improvement heuristics.

IV. DYNAMIC ANT COLONY SYSTEM 3 LEVEL UPDATES
(DACS3)

DACS3 considers the basic concepts introduced in ACS
and DACS. However, we apply individual ant behavior as
presented in Fig. 2, so DACS3 differs from previous systems
in three ways. First, capturing all knowledge from the group
and updating the pheromone level once the knowledge
becomes available would expedite the process and increase
the chances of finding a better solution. Second, a dynamic
penalty on worst tours would open up chances for ants to
navigate, limiting intentions and providing caution in an ant’s
decision to move. Finally, we get better search guidance by
concentrating only on the best tours from all group
performances, subdividing the group into two sections and
then applying the global pheromone updating rule. Fig. 3
shows the workflow of the DACS3 model.

Fig. 3 DACS3 Diagram

In local construction phase, all cities shall be considered as

a starting city r to start a tour computation. However, city r
would not be considered as a visited city at the beginning of
each tour construction. Thus, it constitutes a random start.
Every ant would have to make a complete tour and the
decision to choose which city s to move would be provided by
state transition rules as use in [2]. Every time an ant visits a
city s, it will modify the pheromone level by using local
pheromone updating rule (1). The reason why we used ACS
version of local pheromone updating rule because we believed
that when an ant moves to a new location or ventures into the
unknown territories, it would provides a constant pheromone
deposit and evaporates at static state.

Once all ants in the group completed a tour, the available
knowledge of every member of the group will then be used to

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1227International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

modify the pheromone level using the intermediate
pheromone updating rule (2) in local re-enforcement phase.
The updates are necessary before all ants in the group been
given a new task to complete. In this phase, the dynamic
decay parameter will be used because it helps to alleviate an
early stagnation or helps reducing the possibility of
pheromone growing too high.

 () ()[]() () Csrsrpsr Δ+−← ,.,.1, τττ (2)

where

()[]
()[] ()

⎪
⎩

⎪
⎨

⎧
Δ−

Δ
=Δ

0
,.,.

,.
srsrp

srp
C ττ

τ

and

()
()
()⎪⎩

⎪
⎨
⎧

=Δ
−

−

1

1

,
grw

grb

L

L
srτ

All current completed tours in the group will be compared

to the group best tour in the current iteration and the group
worst tour from the beginning of trial. If no match found, the
edges would experience normal dynamic evaporation. This
method will appreciate every effort the ants make to produce
the best tour but depreciate the worst tour from group
performances. Dynamic penalty ()[]srp ,.τ is used to caution all
ants of the bad paths when later it tries to make a decision to
move on the next tour. Lgrb is the total distance of the best tour
in the current iteration and Lgrw is the total distance of the
worst tour of the group from the beginning of the trial.

The pheromone level once again will be modified using
global pheromone updating rule (3) which is subdivided into
two categories, best of the best and worst of the best. Only the
best tour from the group performance will be considered for
the pheromone update. If no match found, the edges would
experience a normal dynamic evaporation. This method will
provide better searching guidance in the effort to search for
better solution.

() ()[]() () Csrsrpsr Δ+−← ,.,.1, τττ (3)

where

()[]
()[] ()

⎪
⎩

⎪
⎨

⎧
Δ−

Δ
=Δ

0
,.,.

,.
srsrp

srp
C ττ

τ

and

()
()
()⎪

⎩

⎪
⎨

⎧

−

−

=Δ
1

1
,

gwL

gbL
srτ

Lgb is the total distance of the globally best tour (best of the
best) and Lgw is the total distance of globally worst tour (worst
of the best) from the beginning of the trial. Fig. 4 shows how
the DACS3 algorithm works. In this algorithm, we do not
apply any additional strategic techniques or tour improvement
heuristics.

Fig. 4 DACS3 Algorithm

V. THE EXPERIMENTAL SETUP
The algorithm was tested using several datasets taken from

TSPLIB. The algorithm was developed using C language.
Testing was performed on a machine with an Intel Core Duo
1.86GHz processor with 1 gigabyte of physical memory. The
testing used a normal round up method (≥0.5 = 1) to calculate
integer distances. This provides a more meaningful value than
the bankers’ roundup method. Several ant population sizes
were tested in order to determine the best number of ants for
the data. There are two types of datasets being tested:
Euclidean distance (Oliver30, Berlin52, KroC100) and GEO
distance (Burma14).

The experiments sought to determine which algorithms
could reach optimal distance; if all tested algorithms were able
to find it, then performance speed would be the second
measurement. For comparison, the first column is the best

if (r,s) ∈ Global Best Tour
if (r,s) ∈ Global Worst Tour
if (r,s) ∈ Others

GlobalBestTour = ∞;
GlobalWorstTour = 0;
LocalGroupWorstTour = 0;
Initialize pheromone level for all cities =τ 0;
Generate initial solution using Nearest Neighbor (NN) heuristic;
CPU timer starts;
/* Trial begins */
Do
 /* Iteration begins */
 If i <= n
 LocalGroupBestTour = ∞;
 For k = 1 to m
 Start city = i;
 Do
 Select the next city j;
 /*Perform Local Pheromone Update*/
 Update trail level τ ij; (Rule (1))
 While (until all cities visited)
 EndFor
 /*Perform Intermediate Pheromone Update*/
 For k = 1 to m
 Compute tour distance;
 If (tour distance < LocalGroupBestTour)
 LocalGroupBest = current solution;
 Else if (tour distance > LocalGroupWorstTour)
 LocalGroupWorst = current solution;
 Else
 /*Pheromone updates for others*/
 Update trail level τ ij; (Rule (2))
 EndIf
 /*Pheromone updates for LocalGroupBest
 & LocalGroupWorst*/
 Update trail level τ ij for LocalGroupBest; (Rule (2))
 Update trail level τ ij for LocalGroupWorst; (Rule (2))
 EndFor
 EndIf
 /*Perform Global Pheromone Update*/
 Compute tour distance of LocalGroupBest
 If (tour distance < GlobalBestTour)
 GlobalBest = LocalGroupBest;
 Else if (tour distance > GlobalWorstTour)
 GlobalWorst = LocalGroupBest;
 Else
 /*Pheromone updates for others*/
 Update trail level τ ij; (Rule (3))
 EndIf
 /*Pheromone updates for GlobalBest & GlobalWorst*/
 Update trail level τ ij for GlobalBest; (Rule (3))
 Update trail level τ ij for GlobalWorst; (Rule (3))
While (until all termination statements satisfied)

if (r,s) ∈ Local Group Best Tour

if (r,s) ∈ Local Group Worst Tour
if (r,s) ∈ Others

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1228International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

distance from the beginning of the trail, as compared to the
benchmark distance. The second column shows the number of
iteration required to come up with the best distance. The third
column is the best time obtained from 15 trials. The fourth
column is an average time from 15 trials. Distance was
measured by the integer distance (the roundup distance from
each moves) and the real distance (in the bracket). The value
is measured in Euclidean and GEO distances. Real distance
was used as a measurement in calculating distances for
Euclidean datasets, while integer distance was used as the
basis of the distance calculation for GEO datasets. Table I
shows the best parameter settings for the DACS3 experiment,
which is a similar setup from previous work on the ACS and
DACS algorithms [1] [2] [3] [6] [7].

TABLE I

DACS3 PARAMETERS SETTING

VI. RESULT AND DISCUSSION
Table IIA and IIB shows the experimental result of DACS3

compared to DACS. DACS3 has reached the optimal
benchmark distance for most of the case studies accept for
KroC100, but the difference is very small (0.6%). DACS only
reach the optimal benchmark distance for Oliver30 and
Burma14 data. DACS produces 4.4% and 2.1% longer of
shortest distance for Berlin52 and KroC100 datasets
respectively. In term of performance time to get solution for
those algorithms which achieved the same optimal distance,
DACS3 has performed 90% and 75% faster compare to
DACS for Oliver30 and Burma14.

TABLE IIA

DACS3 RESULT COMPARISON TO BENCHMARK
DACS3 (β=2, q0=0.9, p=0.1) – m=10

TSP
Problem

Bench-
mark

Distance
Best

Distance
Best

Iteration

Best
Time
(Sec)

Average
Time
(Sec)

Oliver30
(30-city
problem)

420
(423.74)

420
(423.74) 168 7.000 7.043

Berlin52
(52-city

problem)

7542
(N/A)

7542
(7544.37) 6447 1278.407 1278.590

KroC100
(100-city
problem)

20749
(N/A)

20880
(20881.61

)
7954 10854.40

7 10856.385

Burma14
(14-city

problem)

3323
(N/A)

3323
(3330.61) 94 0.953 1.003

TABLE IIB
DACS RESULT COMPARISON TO BENCHMARK

DACS (β=2, q0=0.9, p=0.1) – m=10
TSP

Problem

Bench
mark

Distance
Best

Distance
Best

Iteration

Best
Time
(Sec)

Average
Time
(Sec)

Oliver30
(30-city
problem)

420
(423.74) 1826 71.484 71.582 420

(423.74)

Berlin52
(52-city

problem)

7881
(7880.78) 3661 694.594 694.835 7881

(7880.78)

KroC100
(100-city
problem)

21190
(21191.37) 1720 2240.984 2242.229 21190

(21191.37)

Burma14
(14-city

problem)

3323
(3330.61) 527 4.766 4.823 3323

(3330.61)

The result shows that DACS3 has produced shorter distance

for all case studies but perform a bit longer time to get
solution for bigger data. However, DACS3 outperformed
DACS algorithm in all cases.

Fig 5(a)-(d) shows the log graphs of shortest distance
versus iterations. The comparison is done between DACS3
and DACS for datasets Burma14, Oliver30, Berlin52 and
KroC100. DACS3 has obtained good searching performance
when small size problem (Burma14 and Oliver30) involved.
This is shown by the fact that DACS3 has outperforms other
algorithms throughout the run. However, when DACS3
searches for solutions for slightly bigger problems (Berlin50
and KroC100), it performs poorly at the beginning of the
search but produces good performance in the middle and end
of the run.

Algorithm Comparison
Burma14 (14 cities problem)

3250

3350

3450

3550

3650

0 500 1000
Iterations

G
eo

 D
is

ta
nc

e

Log. (DACS3) Log. (DACS)

Fig.5 (a) Log graph algorithm comparison for Burma14 problem

Parameters Value
Ants Population Size (m) 10

0q 0.9
β 2
p 0.1

Max Iterations 10000

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1229International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

Algorithm Comparison
Oliver30 (30 cities problem)

420

430

440

450

0 500 1000
Iterations

Eu
cl

id
ea

n
D

is
ta

nc
e

Log. (DACS3) Log. (DACS)

Fig. 5(b) Log graph algorithm comparison for Oliver30 problem

Algorithm Comparison
Berlin52 (52 cities problem)

7500

8000

8500

9000

9500

0 500 1000
Iterations

Eu
cl

id
ea

n
D

is
ta

nc
e

Log. (DACS) Log. (DACS3)

Fig. 5(c) Log graph algorithm comparison for Berlin52 problem

Algorithm Comparison
KroC100 (100 cities problem)

20000
21000
22000
23000
24000
25000
26000

0 500 1000
Iterations

Eu
cl

id
ea

n
D

is
ta

nc
e

Log. (DACS) Log. (DACS3)

Fig. 5 (d) Log graph algorithm comparison for KroC100 problem

VII. CONCLUSION AND FURTHER RESEARCH
Based on the result stated above, we can concludes that

manipulating and empowering the available knowledge of the
individuals can provide a significant advantage in order to
solve the whole perspective of the problem. Harnessing
experiences of every single individual and in this case, the
ants, can expedite the process of finding a good or better
solution either shorter distance or/and performance time to get
solution. Based on the graph we can see that DACS3 has an
outstanding searching performance for smaller data but
slightly poor at the beginning of the search for bigger data but
outperformed every algorithm at the middle of the run.
Therefore, the next step is to optimise the iteration process in
DACS3 using various strategic techniques such as candidate

list, pheromone trails smoothing (PTS), and the elitist ant
concepts.

REFERENCES
[1] M. Dorigo, V. Maniezzo, and A. Colorni, The Ant System: Optimization

by a colony of cooperating agents, IEEE Transactions on Systems, Man
and Cybernatics-Part B, vol. 26, no. 1, pp.1-13, 1996.

[2] M. Dorigo, and L. M. Gambardella, Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem, IEEE
Transaction of Evolutionary Computation, vol.1, no 1, pp.53-66, 1997.

[3] Y. Li, and S. Gong, Dynamic ant colony optimization for TSP, Int J Adv
Manuf Technol, vol. 22, pp. 528-533, July 2003.

[4] L. M. Gambardella, E. Taillard, and G. Agazzi, MACS-VRPTW: A
Multiple Ant Colony System for Vehicle Routing Problems with Time
Windows, Technical Report IDSIA (IDSIA-06-99), 1999.

[5] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati,
Ant colony system for a dynamic vehicle routing problem, Journal of
Combinatorial Optimization, vol. 10, no. 4, pp. 327-343, December
2005.

[6] M. Dorigo, and K. Socha, An Introduction to Ant Colony Optimization,
Book Chapter in Approximation Algorithms and Metaheuristic, CRC
Press 2007.

[7] M. Dorigo, M. Birattari, and T. Stutzle, Ant Colony Optimization –
Artificial Ants as a Computational Intelligence Technique, IEEE
Computation Intelligent Magazine, 2006.

[8] M. Dorigo, E. Bonabeau, and G. Theraulaz, Ant algorithms and
stigmergy, Journal of Future Generation Computer Systems, vol. 16, pp.
851 – 871, 2000.

[9] M. Dorigo, and K. Socha, An Introduction to Ant Colony Optimization,
Technical Report IRIDIA 2006-010, April 2006.

[10] J-L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels, The self-
organizing exploratory pattern of Argentine Ant, Journal of Insect
Behavior, vol. 3, pp. 59-168, 1990.

[11] M. Dorigo, G. Di Caro and L. M. Gambardella, Ant Algorithms for
Discrete Optimization. Journal of Artificial Life, vol. 5, no. 2x, pp. 137-
172, 1990.

[12] C. Anderson, and N. R. Franks, Teams in animal societies, Journal of
Behavioral Ecology, vol. 12, no. 5, pp. 534-540, September 2000.

[13] L.M. Gambardella, and M. Dorigo, Ant-Q: A Reinforcement Learning
Approach to the Traveling Salesman Problem. Proceedings of ML-95,
Twelfth International Conference on Machine Learning, 1995, pp. 252-
260.

[14] T. Stützle, and H. H. Hoos, MAX-MIN Ant System, Journal of Future
Generation Computer Systems, vol. 16, no. 8, pp. 889-914, 2000.

[15] M. Fleischer, Foundation of Swarm Intelligence: From Principles to
Practice, Conference on Swarming: Network Enabled C4ISR, January
2003.

[16] M. Dorigo, and G. Di Caro, The Ant Colony Optimization Meta-
Heuristic, In D. Corne, M. Dorigo and F. Glover, editors, New Ideas in
Optimization, McGraw-Hill, 1999, pp. 11-32.

[17] M. Gendreau, and J. Y. Potvin, Metaheuristic in Combinatorial
Optimization, Annals of Operation Research, vol. 140, pp. 189-213,
2005.

[18] B. Fox, W. Xiang, and H. P. Lee, Industrial applications of the ant
colony optimization algorithm, Int J Adv Manuf Technol, July 2005.

[19] E. Bonabeau, and C. Meyer, Swarm Intelligence: A Whole New Way to
Think about Business, Harvard Business Review, May 2001.

[20] D. Gaertner, and K. Clark, On Optimal Parameters for Ant Colony
Optimization algorithms, Proceedings of International Conference on
Artificial.

[21] P. E. Merloti, Optimization Algorithms Inspired by Biological Ants and
Swarm Behavior, San Diego State University, Artificial Intelligence
Technical Report, CS550, San Diego, June 2004.

[22] C. Grosan, and A. Abraham, Stigmergic Optimization: Inspiration,
Technologies and Perspectives. Studies in Computational Intelligence
Journal, vol. 31, Springer Publishing 2006.

[23] H. Md Rais, Z.A. Othman and A. R. Hamdan, Improved Dynamic Ant
Colony System (DACS) on Symetric Traveling Salesman Problem
(TSP), International Conference on Intelligent and Advanced System
(ICIAS 2007), November 2007.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1230International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

33
8.

pd
f

