Search results for: Tumor volume estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093

Search results for: Tumor volume estimation.

32643 Fuzzy Control of the Air Conditioning System at Different Operating Pressures

Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah

Abstract:

The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.

Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
32642 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: Accelerated life test, inverse power law, lithium ion battery, reliability evaluation, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
32641 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
32640 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: Features extraction, image segmentation, medical images, tumour detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
32639 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
32638 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: Artificial neural networks, digital image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
32637 A User Friendly Tool for Performance Evaluation of Different Reference Evapotranspiration Methods

Authors: Vijay Shankar

Abstract:

Evapotranspiration (ET) is a major component of the hydrologic cycle and its accurate estimation is essential for hydrological studies. In past, various estimation methods have been developed for different climatological data, and the accuracy of these methods varies with climatic conditions. Reference crop evapotranspiration (ET0) is a key variable in procedures established for estimating evapotranspiration rates of agricultural crops. Values of ET0 are used with crop coefficients for many aspects of irrigation and water resources planning and management. Numerous methods are used for estimating ET0. As per internationally accepted procedures outlined in the United Nations Food and Agriculture Organization-s Irrigation and Drainage Paper No. 56(FAO-56), use of Penman-Monteith equation is recommended for computing ET0 from ground based climatological observations. In the present study, seven methods have been selected for performance evaluation. User friendly software has been developed using programming language visual basic. The visual basic has ability to create graphical environment using less coding. For given data availability the developed software estimates reference evapotranspiration for any given area and period for which data is available. The accuracy of the software has been checked by the examples given in FAO-56.The developed software is a user friendly tool for estimating ET0 under different data availability and climatic conditions.

Keywords: Crop coefficient, Crop evapotranspiration, Field moisture, Irrigation Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
32636 Preparation and Bioevaluation of DOTA-Cyclic RGD Peptide Dimer Labeled with 68Ga

Authors: Archana Mukherjee, Aruna Korde, Sudipta Chakraborty, H. D. Sarma, Grace Samuel, M. R. A. Pillai

Abstract:

Radiolabeled cyclic RGD peptides targeting integrin αvβ3 are reported as promising agents for the early diagnosis of metastatic tumors. With an aim to improve tumor uptake and retention of the peptide, cyclic RGD peptide dimer E[c (RGDfK)] 2 (E = Glutamic acid, f = phenyl alanine, K = lysine) coupled to the bifunctional chelator DOTA was custom synthesized and radiolabelled with 68Ga. Radiolabelling of cyclic RGD peptide dimer with 68Ga was carried out using HEPES buffer and biological evaluation of the complex was done in nude mice bearing HT29 tumors.

Keywords: 68Ga peptides, Angiogenesis imaging, Cyclic RGD peptides, PET Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
32635 Human Absorbed Dose Estimation of a New IN-111 Imaging Agent Based on Rat Data

Authors: H. Yousefnia, S. Zolghadri

Abstract:

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In- 1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In- DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In- DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, DOTMP, Internal Dosimetry, RADAR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
32634 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
32633 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
32632 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara

Abstract:

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.

Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
32631 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection

Authors: P. Bountris, E. Farantatos, N. Apostolou

Abstract:

Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.

Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
32630 Performance Comparison and Analysis of Different Schemes and Limiters

Authors: Wang Wen-long, Li Hua, Pan Sha

Abstract:

Eight difference schemes and five limiters are applied to numerical computation of Riemann problem. The resolution of discontinuities of each scheme produced is compared. Numerical dissipation and its estimation are discussed. The result shows that the numerical dissipation of each scheme is vital to improve scheme-s accuracy and stability. MUSCL methodology is an effective approach to increase computational efficiency and resolution. Limiter should be selected appropriately by balancing compressive and diffusive performance.

Keywords: Scheme; Limiter, Numerical simulation, Riemannproblem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
32629 A Self Organized Map Method to Classify Auditory-Color Synesthesia from Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Takamasa Komura, Yosuke Kurihara

Abstract:

Absolute pitch is the ability to identify a musical note without a reference tone. Training for absolute pitch often occurs in preschool education. It is necessary to clarify how well the trainee can make use of synesthesia in order to evaluate the effect of the training. To the best of our knowledge, there are no existing methods for objectively confirming whether the subject is using synesthesia. Therefore, in this study, we present a method to distinguish the use of color-auditory synesthesia from the separate use of color and audition during absolute pitch training. This method measures blood volume in the prefrontal cortex using functional Near-infrared spectroscopy (fNIRS) and assumes that the cognitive step has two parts, a non-linear step and a linear step. For the linear step, we assume a second order ordinary differential equation. For the non-linear part, it is extremely difficult, if not impossible, to create an inverse filter of such a complex system as the brain. Therefore, we apply a method based on a self-organizing map (SOM) and are guided by the available data. The presented method was tested using 15 subjects, and the estimation accuracy is reported.

Keywords: Absolute pitch, functional near-infrared spectroscopy, prefrontal cortex, synesthesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
32628 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin

Abstract:

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
32627 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
32626 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
32625 Morphological Description of Cervical Cell Images for the Pathological Recognition

Authors: N. Lassouaoui, L. Hamami, N. Nouali

Abstract:

The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.

Keywords: Cervical cell, morphological analysis, recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
32624 Almost Periodic Solution for an Impulsive Neural Networks with Distributed Delays

Authors: Lili Wang

Abstract:

By using the estimation of the Cauchy matrix of linear impulsive differential equations and Banach fixed point theorem as well as Gronwall-Bellman’s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for an impulsive neural networks with distributed delays. An example is presented to illustrate the feasibility and  effectiveness of the results.

Keywords: Almost periodic solution, Exponential stability, Neural networks, Impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
32623 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: Hydrofining, kinetic, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
32622 Design and Implementation of Cricket-based Location Tracking System

Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko

Abstract:

In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.

Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
32621 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach

Abstract:

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
32620 A Model for Estimation of Efforts in Development of Software Systems

Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht

Abstract:

Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.

Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
32619 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
32618 Iterative Solutions to Some Linear Matrix Equations

Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan

Abstract:

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
32617 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs

Authors: S. Chaisit, H.Y. Kung, N.T. Phuong

Abstract:

Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.

Keywords: BPNs, indoor location, location estimation, intelligent location identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
32616 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
32615 Emergency Generator Sizing and Motor Starting Analysis

Authors: Mukesh Kumar Kirar, Ganga Agnihotri

Abstract:

This paper investigates the preliminary sizing of generator set to design electrical system at the early phase of a project, dynamic behavior of generator-unit, as well as induction motors, during start-up of the induction motor drives fed from emergency generator unit. The information in this paper simplifies generator set selection and eliminates common errors in selection. It covers load estimation, step loading capacity test, transient analysis for the emergency generator set. The dynamic behavior of the generator-unit, power, power factor, voltage, during Direct-on-Line start-up of the induction motor drives fed from stand alone gene-set is also discussed. It is important to ensure that plant generators operate safely and consistently, power system studies are required at the planning and conceptual design stage of the project. The most widely recognized and studied effect of motor starting is the voltage dip that is experienced throughout an industrial power system as the direct online result of starting large motors. Generator step loading capability and transient voltage dip during starting of largest motor is ensured with the help of Electrical Transient Analyzer Program (ETAP).

Keywords: Sizing, induction motor starting, load estimation, Transient Analyzer Program (ETAP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13977
32614 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW

Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari

Abstract:

Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.

Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3901