Search results for: Distributed intrusion detection system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9851

Search results for: Distributed intrusion detection system

9401 Comparative Study of QRS Complex Detection in ECG

Authors: Ibtihel Nouira, Asma Ben Abdallah, Ibtissem Kouaja, Mohamed Hèdi Bedoui

Abstract:

The processing of the electrocardiogram (ECG) signal consists essentially in the detection of the characteristic points of signal which are an important tool in the diagnosis of heart diseases. The most suitable are the detection of R waves. In this paper, we present various mathematical tools used for filtering ECG using digital filtering and Discreet Wavelet Transform (DWT) filtering. In addition, this paper will include two main R peak detection methods by applying a windowing process: The first method is based on calculations derived, the second is a time-frequency method based on Dyadic Wavelet Transform DyWT.

Keywords: Derived calculation methods, Electrocardiogram, R peaks, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
9400 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
9399 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam

Abstract:

Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.

Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
9398 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: Android, permissions combination, API calls, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
9397 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: Building system, time series, diagnosis, outliers, delay, data gap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
9396 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: Phosphate detection, paper-based device, molybdenum blue method, colorimetric assay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
9395 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
9394 Robust Probabilistic Online Change Detection Algorithm Based On the Continuous Wavelet Transform

Authors: Sergei Yendiyarov, Sergei Petrushenko

Abstract:

In this article we present a change point detection algorithm based on the continuous wavelet transform. At the beginning of the article we describe a necessary transformation of a signal which has to be made for the purpose of change detection. Then case study related to iron ore sinter production which can be solved using our proposed technique is discussed. After that we describe a probabilistic algorithm which can be used to find changes using our transformed signal. It is shown that our algorithm works well with the presence of some noise and abnormal random bursts.

Keywords: Change detection, sinter production, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
9393 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems

Authors: Andrey V. Timofeev

Abstract:

A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDRsystem are presented.

Keywords: Guaranteed detection, C-OTDR systems, change point, interval estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
9392 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
9391 Cloud Computing Initiative using Modified Ant Colony Framework

Authors: Soumya Banerjee, Indrajit Mukherjee, P.K. Mahanti

Abstract:

Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.

Keywords: Ant Colony, Cloud Computing, Grid, Resource allocator, Service Request.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
9390 Design of Liquids Mixing Control System using Fuzzy Time Control Discrete Event Model for Industrial Applications

Authors: M.Saleem Khan, Khaled Benkrid

Abstract:

This paper presents a time control liquids mixing system in the tanks as an application of fuzzy time control discrete model. The system is designed for a wide range of industrial applications. The simulation design of control system has three inputs: volume, viscosity, and selection of product, along with the three external control adjustments for the system calibration or to take over the control of the system autonomously in local or distributed environment. There are four controlling elements: rotatory motor, grinding motor, heating and cooling units, and valves selection, each with time frame limit. The system consists of three controlled variables measurement through its sensing mechanism for feed back control. This design also facilitates the liquids mixing system to grind certain materials in tanks and mix with fluids under required temperature controlled environment to achieve certain viscous level. Design of: fuzzifier, inference engine, rule base, deffuzifiers, and discrete event control system, is discussed. Time control fuzzy rules are formulated, applied and tested using MATLAB simulation for the system.

Keywords: Fuzzy time control, industrial application and timecontrol systems, adjustment of Fuzzy system, liquids mixing system, design of fuzzy time control DEV system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
9389 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises

Authors: Il Young Song, Du Yong Kim, Vladimir Shin

Abstract:

This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.

Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
9388 Detecting Interactions between Behavioral Requirements with OWL and SWRL

Authors: Haibo Hu, Dan Yang, Chunxiao Ye, Chunlei Fu, Ren Li

Abstract:

High quality requirements analysis is one of the most crucial activities to ensure the success of a software project, so that requirements verification for software system becomes more and more important in Requirements Engineering (RE) and it is one of the most helpful strategies for improving the quality of software system. Related works show that requirement elicitation and analysis can be facilitated by ontological approaches and semantic web technologies. In this paper, we proposed a hybrid method which aims to verify requirements with structural and formal semantics to detect interactions. The proposed method is twofold: one is for modeling requirements with the semantic web language OWL, to construct a semantic context; the other is a set of interaction detection rules which are derived from scenario-based analysis and represented with semantic web rule language (SWRL). SWRL based rules are working with rule engines like Jess to reason in semantic context for requirements thus to detect interactions. The benefits of the proposed method lie in three aspects: the method (i) provides systematic steps for modeling requirements with an ontological approach, (ii) offers synergy of requirements elicitation and domain engineering for knowledge sharing, and (3)the proposed rules can systematically assist in requirements interaction detection.

Keywords: Requirements Engineering, Semantic Web, OWL, Requirements Interaction Detection, SWRL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
9387 Performance Analysis of Load Balancing Algorithms

Authors: Sandeep Sharma, Sarabjit Singh, Meenakshi Sharma

Abstract:

Load balancing is the process of improving the performance of a parallel and distributed system through a redistribution of load among the processors [1] [5]. In this paper we present the performance analysis of various load balancing algorithms based on different parameters, considering two typical load balancing approaches static and dynamic. The analysis indicates that static and dynamic both types of algorithm can have advancements as well as weaknesses over each other. Deciding type of algorithm to be implemented will be based on type of parallel applications to solve. The main purpose of this paper is to help in design of new algorithms in future by studying the behavior of various existing algorithms.

Keywords: Load balancing (LB), workload, distributed systems, Static Load balancing, Dynamic Load Balancing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5945
9386 Learning Process Enhancement for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib

Abstract:

Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.

Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
9385 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper, approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered: first one, deterministic (Barker code), and second one, random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.

Keywords: Antenna array, detection curves, performance characteristics, quadrature processing, signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
9384 Shunt Power Active Filter Control under NonIdeal Voltages Conditions

Authors: H. Abaali, M. T. Lamchich, M. Raoufi

Abstract:

In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.

Keywords: Distorted, harmonic, Modified Synchronous Detection Method, PI regulator, Shunt Active Power Filter, unbalanced.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
9383 Multiagent Systems Simulation

Authors: G. Balakayeva, A. Aktymbayeva

Abstract:

In this paper, we consider components of discrete event imitating model, implementing a simulation model by using JAVA and performing an input analysis of the data and an output analysis of the simulation results. Was lead development of imitating model of mass service system with n (n≥1) devices of service. On the basis of the developed process of a multithreading simulated the distributed processes with presence of synchronization. Was developed the algorithm of event-oriented simulation, was received results of system functioning with n devices of service.

Keywords: Imitating modeling, Mass service system, Multi agentsystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
9382 Segmentation of Noisy Digital Images with Stochastic Gradient Kernel

Authors: Abhishek Neogi, Jayesh Verma, Pinaki Pratim Acharjya

Abstract:

Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.

Keywords: Image segmentation, edge Detection, noisy images, spatialfilters, stochastic gradient kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
9381 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method

Authors: V. Rashtchi, R. Aghmasheh

Abstract:

Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.

Keywords: broken bar, PSO, fault detection, SCIM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
9380 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of  clipping in speech signals is described. It is shown that the new  method has better performance than known clipping detection  methods, is easy to implement, and is robust to changes in signal  amplitude, size of data, etc. Statistical simulation results are  presented.

 

Keywords: Clipping, clipped signal, speech signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
9379 Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

Authors: S. Dehghan, B. Kiani, A. Kazemi, A. Parizad

Abstract:

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

Keywords: Distributed Generation, Fuel Cell, HS, Hybrid Power Plant, PSO, Photovoltaic, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
9378 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
9377 Object Recognition on Horse Riding Simulator System

Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim

Abstract:

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
9376 Evaluation of Haar Cascade Classifiers Designed for Face Detection

Authors: R. Padilla, C. F. F. Costa Filho, M. G. F. Costa

Abstract:

In the past years a lot of effort has been made in the field of face detection. The human face contains important features that can be used by vision-based automated systems in order to identify and recognize individuals. Face location, the primary step of the vision-based automated systems, finds the face area in the input image. An accurate location of the face is still a challenging task. Viola-Jones framework has been widely used by researchers in order to detect the location of faces and objects in a given image. Face detection classifiers are shared by public communities, such as OpenCV. An evaluation of these classifiers will help researchers to choose the best classifier for their particular need. This work focuses of the evaluation of face detection classifiers minding facial landmarks.

Keywords: Face datasets, face detection, facial landmarking, haar wavelets, Viola-Jones detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5409
9375 An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching

Authors: Chinmay Soman, Hrishikesh Pathak, Vishal Shah, Aniket Padhye, Amey Inamdar

Abstract:

Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.

Keywords: World Wide Web, Phishing, Internet security, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
9374 Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge

Authors: Brahim Hamid, Bertrand Le Saec, Mohamed Mosbah

Abstract:

The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.

Keywords: Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
9373 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
9372 A Middleware Management System with Supporting Holonic Modules for Reconfigurable Management System

Authors: Roscoe McLean, Jared Padayachee, Glen Bright

Abstract:

There is currently a gap in the technology covering the rapid establishment of control after a reconfiguration in a Reconfigurable Manufacturing System. This gap involves the detection of the factory floor state and the communication link between the factory floor and the high-level software. In this paper, a thin, hardware-supported Middleware Management System (MMS) is proposed and its design and implementation are discussed. The research found that a cost-effective localization technique can be combined with intelligent software to speed up the ramp-up of a reconfigured system. The MMS makes the process more intelligent, more efficient and less time-consuming, thus supporting the industrial implementation of the RMS paradigm.

Keywords: Intelligent systems, middleware, reconfigurable manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608