
Abstract—Phishing, or stealing of sensitive information on the

web, has dealt a major blow to Internet Security in recent times. Most

of the existing anti-phishing solutions fail to handle the fuzziness

involved in phish detection, thus leading to a large number of false

positives. This fuzziness is attributed to the use of highly flexible and

at the same time, highly ambiguous HTML language. We introduce a

new perspective against phishing, that tries to systematically prove,

whether a given page is phished or not, using the corresponding

original page as the basis of the comparison. It analyzes the layout of

the pages under consideration to determine the percentage distortion

between them, indicative of any form of malicious alteration. The

system design represents an intelligent system, employing dynamic

assessment which accurately identifies brand new phishing attacks

and will prove effective in reducing the number of false positives.

This framework could potentially be used as a knowledge base, in

educating the internet users against phishing.

Keywords—World Wide Web, Phishing, Internet security, data

mining.

I. INTRODUCTION

HISHING is a criminal activity using social engineering

techniques [1], [2]. Phishers try to fraudulently acquire

sensitive information (e-banking passwords, social security

numbers, credit card numbers and so on) by constructing

counterfeit websites resembling original ones and deceiving

the users into believing that they are legitimate.

Cases of phishing attacks have been rising rapidly as

reported by the Anti-Phishing Working Group (APWG). It is

estimated that the losses due to phishing in the year 2007 were

$3.2 billion [16]. In addition, the number of unique phishing

sites in September, 2007 was 28015 while the number of

unique phishing reports was 38514 [4]. This is the prime

indicator that static solutions like use of blacklists are

ineffective against such a grave problem.

Current Solutions

Although a wide range of anti-phishing products are

available, most of them are not able to make a decision

dynamically, whether the site is in fact, phished, giving rise to

a large number of false positives [18]. According to a study by

CyLab, Carnegie Mellon University, heuristics and blacklist

are the most popularly used methods against phishing. The

different methodologies along with their drawbacks as

observed in this study [13], [14] are summarized in Table I.

TABLE I

COMPARISON OF TECHNIQUES

Drawbacks Technique

False

Positives

Zero day

attack

Fake

Interface

attack

Slow

resp-

onse

time

Blacklist No Yes No No

Heuristics Yes Maybe No Maybe

User

Polling

Yes Yes Yes Maybe

Third party

certification

authorities

No No Yes Maybe

Our solution No No No Maybe

The techniques are described in detail below:

- Blacklist check:

The suspicious URL is matched against a list of known

Phishing sites. This method is susceptible to “zero day

attacks” [17]. Also, techniques like URL obfuscation and

routing through alternate domain name can hinder this method

ineffective. As our solution does not employ a blacklist, these

problems are not observed.

- Heuristics:

Uses heuristics like domain registration information (owner,

age, and country), the number of links to other known-good

sites, image hashing, third-party cookies and user reviews.

Most of the heuristics used are subjective and produce a large

number of false positives. Although some heuristics are used

in our solution, they are used only in the pre-processing

stages, and the actual phish detection is completely

independent of them.

- User rating/polling:

Deem the URL as phished, based on user votes. However, it is

ineffective against new phishing attacks and is very

subjective. Our solution does not incorporate any kind of

polling, thus reducing uncertainty.

- Working with third party certification authorities and

reputation services:

Requires an additional interface, which itself is susceptible to

phishing. Phish detection in our solution is handled

completely on the server side, without involving any third

party service.

Another technique is to use page rank methodology,

domain analysis, URL type analysis, and word analysis, in

order to detect a phishing URL [15]. However, false positives

An Intelligent System for Phish Detection, using

Dynamic Analysis and Template Matching

Chinmay Soman, Hrishikesh Pathak, Vishal Shah, Aniket Padhye, and Amey Inamdar

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1927International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

have been observed in these methods. Also, a web site routed

through content distribution network (CDN) [19] would create

problems for domain based checks. Our solution is not limited

to URL processing, but also analyzes the page layout.

Yet another technique includes phish detection using digital

fingerprinting techniques [10]. It is somewhat similar to our

technique from the point of view of identifying the

corresponding legitimate web pages, but depends on assigning

probabilities to the source hashes, which may not be

foolproof. Our solution is designed using a comprehensive

categorization scheme for source detection, giving better

accuracy.

Other solutions include – Web Wallet, which is a browser

sidebar, used to submit sensitive information online. However,

it is susceptible to undetected form attack, and fake interface

attack [9]. Our solution does not depend on any such

interface, which itself is likely to get spoofed.

Our solution

By analyzing the weak points of the current solutions

(Phishing Detection and Prevention [12]), it was inferred, that

the best solution:

Should detect “phishing” dynamically.

Should be transparent to the user.

Use foolproof criteria to deem a page as being

“phished”.

Should not be time consuming.

These are the lines on which, our framework was designed.

It has a simple client-server architecture. A user agent is

installed on the client machine, which acts as an arbiter

between the user and the server. The user agent is nothing but

a browser plug-in [8], responsible for invoking the necessary

server API (Application Programming Interface) for analyzing

pages. When a request is received by the server, it performs a

complete scan of the suspect page, which includes:

- Finding the original page corresponding to the “suspect

page”.

- Performing high level comparison

- Structurally matching the two pages, to uncover any

distortions present.

before declaring the page as phished or authentic. A phished

page can be declared as “phished” with sufficient accuracy as

we have the original page as the basis of the comparison.

Thus, a very important part of the entire phish detection

process is to identify the original page from the millions of

authentic pages. A distinct advantage of this approach is the

reduction or a possible annihilation of the “Zero day attacks”

(the time between a new phishing attack is launched and

before entry for the same gets updated in the blacklist). This

was a major problem earlier, as most of the solutions relied

heavily on blacklisting for blocking such sites. By performing

a complete and thorough scan of the “suspect web page”, it

proves to be a dynamic, flexible while at the same time,

rigorous solution against phishing.

In order to cut down on complexity, the detection process is

completely modularized. Web page preprocessing is done,

which enables to not only reduce their disk size, but also assist

in the complicated comparison stage. However, the structural

matching module is still costly, due to the immense

calculations involved.

The rest of the paper is organized as follows. Section II

illustrates the nature of the Zone map database. Section III

throws light on the very important categorization module. In

section IV, we analyze structural matching and the intricacies

involved. Section V demonstrates the results of the

experiments and we conclude with section VI.

II. ZONE MAPS

The server database consists of an extensive collection of

authentic web pages which serve as a point of reference

during categorization. These web pages are not stored in their

original state, but are processed by the server to form “zone

maps”. Motivation for creating these “zone maps” is:

i) Minimize processing time.

ii) Facilitate structural matching, which cannot be done,

simply by comparing the HTML source codes.

A Zone map is nothing but a partitioning of the HTML

page, based on the explicit visual separators that act as page

layout demarcations. This partitioning is done based on the X-

Y coordinate information for every individual HTML element,

which is embedded into the suspect page, by the client side

plug-in [6]. This partitioning enables us to concentrate on

elements that are visually closer to each other, irrespective of

their position in the HTML source document.

A separator is defined as any explicit visual HTML element

that serves to demarcate the HTML page into different

sections or zones (IMG, HR, whitespace, TD, DIV and so on).

The factors used to identify a visual separator are:

Lies within 1/8th and 7/8th of the width (or height) of

the parent container or parent zone.

Has a width (or height) >= 50% of that of the parent

container or parent zone.

Has a visual property, explicitly different with

respect to its parent element (for example color).

White space elements also serve as separators.

The following thresholds have been defined for determining

separators:

 Height_threshold =

(zone_y2 – zone_y1) / WEIGHT_FACTOR.

Width_threshold =

(zone_x2 – zone_x1) / WEIGHT_FACTOR.

where,

(zone_x1, zone_y1) (zone_x2, zone_y2) is the current zone.

Initially, the base zone is the whole page itself. Hence we

start with a WEIGHT_FACTOR of 8 which is reduced

linearly as the zones keep getting smaller. The HTML element

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1928International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

under consideration should satisfy following thresholds, to

qualify as being a separator.

 Consider a separator S.

Horizontal separator:

S_width / zone_width > S_height / zone_height

Vertical separator:

S_height / zone_height > S_width / zone_width

The idea here is to find the widest separator (horizontal)

first, within a zone while vertical separators have a lower

priority. In case of a contention regarding which separator to

select (horizontal or vertical), the separator having proximity

to the center of the parent zone, is finalized.

Map Creation

Initially, we start out with a base zone or the root zone

comprising the whole HTML document and go on recursively

dividing it into sub-zones, until

- A zone becomes small enough

- Visual separators cannot be found.

An algorithm used to create the different zones is given

below:

1. Let base zone = BODY element of the HTML

document. Push base zone onto the stack. It contains

the (x1,y1) and (x2,y2) coordinate information that

defines the boundary of the zone.

2. While stack not empty

a. Pop the zone from the top of the stack and

extract the (x1,y1) (x2,y2) information. Call

it the base zone.

b. Check if the base zone is small enough by

comparing the zone area against a

predetermined threshold (for example 50K

square pixels). If yes, finalize the zone i.e.

insert it into the zone list and go to step

(2.a).

c. Extract all the separators falling in the

window – ((x1,y1) (x2,y2)).

d. If there are no more separators, finalize this

zone and insert it into the zone list. Go to

step 2.a.

e. Based on the factors discussed above, select

a primary separator for that zone. Save this

separator information in a list (to be used

later).

f. Based on the primary separator, divide the

base zone into two sub-zones, and push

them on the stack along with their

coordinate information.

At end, we have two lists, a zone list and a separator

summary list. After all the zones have been identified and

their boundaries been clearly specified, the HTML elements in

the source DOM tree [11] are segregated according to these

zones, to form zone sub-trees. A dummy root is created to

form a parent node for all such zone sub-trees and the

resulting tree structure is written out to an HTML file, with

new tags and attributes created, where appropriate. This file is

nothing but the “Zone Map”. Zone partitioning is depicted as

shown in Fig. 1.

Fig. 1 Zone partitioning

The separators that were identified as a part of building the

zone map serve a dual purpose. Their primary objective is to

demarcate the zone layout. But they are not discarded, after

the boundaries have been identified. Instead, these separators

are explicitly written out to another file called “summary

file” to serve as a final stage categorization mechanism.

Intuitively, we can infer that HTML pages, having similar

layout are bound to have similar “summary files”.

III. CATEGORIZATION

The categorization stage serves to identify the original web

page in correspondence to the suspect page. It is characterized

by condensation of the search space that is involved while

matching the suspect page with the millions of web pages that

exist in our database. It is divided into 2 stages - the first stage

involves the determination of the base set of pages. The

second stage further narrows down to a single page or a

refined set of pages.

Two important data structures are used in the process of

categorization – Map table, and lookup table. The map table

comprises of a list of entries, one for each original web page,

recording its important attributes such as keywords, URL,

domain and so on. The lookup table forms a reverse index on

the map table. It essentially maps a keyword, to map table

entries containing that keyword. The role played by these data

structures is shown in Fig. 2.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1929International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

Fig. 2 Categorization process

Stage1

At the inception of stage1, keywords are extracted from the

suspect page, which are nothing but the common and proper

nouns characterizing that page. The title of the page forms a

primary source of these keywords. But in cases, where the title

is insignificant, keywords are extracted from other sources,

such as the URL of the web page, the meta information, the

“alt” attribute of the images occurring in the page and so on.

A POS (Parts Of Speech) tagger is used for this extraction [7].

Ultimately, these keywords are matched against the lookup

table, to obtain different lists of entries, one list for each

keyword, pointing to the map table. These lists entries form a

superset of original pages, corresponding to the suspect page.

This set is refined, by taking an intersection of these lists, to

form the base set. For instance, consider example set given in

Table II.I and Table II.II.

TABLE II.I

MAP TABLE

Sr Keywords URL

Primary Secondary

1 http://www.banko

famerica.com

Bank,

America

e-banking

2 http://www.ameri

castore.com

America,

Store

e-money

3 http://www.icici

bank.com

Bank,

ICICI

Loan,

Corporate

 Banking

4 http://www.ebay

.com

Ebay

TABLE II.II

REVERSE LOOKUP

Reverse

index

Keywor

d

1,3 Bank

1,2 America

3 ICICI

4 Ebay

… …

Consider a scenario:

Suspect URL:

“http://www.chileaoe.com/db/bankofamerica/cig/update.html”

Keywords extracted:

bank, America, chileaoe

The reverse indices for these keywords and their

intersection gives index = 1. However, statistically speaking,

primary keywords (proper nouns) carry more weight, and their

reverse indices are retained in the base set. Thus the final

index list obtained is {1, 2}. It results in the base set given in

Table III.

TABLE III

STAGE 1RESULTS

URL Match

http://www.bankofamerica.com 87 %

http://www.americastore.com 63 %

During keyword comparison, the levenstein algorithm [5]

for fuzzy string comparison is used, in order to compensate

for the textual distortion present. Tunable thresholds have

been defined (ranging from 0.5 to 0.9) to deem an abnormal

keyword as a match or a mismatch. Table IV lists some of the

abnormal keywords detected:

TABLE IV

LEVENSTEIN RESULTS

Original

keyword

Suspect

keyword

Match

level

America amaerica 0.933

ebay ebaay 0.889

ebay ebay-centers 0.5

Stage2

After all the keywords have been exhausted, emphasis is

given on the visual layout of the pages, to further refine the

base set. This process is called separator matching. The

separator files (refer section II.I) corresponding to each of the

pages in the base set, are analyzed one at a time. The

separators from the suspect page are compared with the

separators from this file to obtain a percentage matching. The

original pages, whose matching percentage crosses a pre-

determined threshold, are retained, while the others are

eliminated. The final base set thus consists of those pages, on

which structural matching is carried out.

IV. STRUCTURAL MATCHING

Structural matching aims at comparing two pages at a time,

in order to determine the percentage matching between the

visual layouts of those pages. It helps not only to identify the

target original page (having the highest matching percentage

and satisfying the specified threshold), but also tracks where

exactly, visual distortion has been done. The latter part of the

outcome, although seemingly non-productive is in fact the

source of user education.

Consider the process of examining objective answer sheets,

in which the answers are provided by checking a box or filling

a circle for the respective questions. The sheets are examined

by using a transparency having all the correct answers, in the

form of checkboxes or circles marked appropriately. The

transparency is then placed on top of the paper to identify

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1930International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

elements that coincide (the correct answers) and those that

differ (the incorrect answers). Similarly, we can think of the

original web page derived from the categorization module to

be the transparency and the suspect web page to be the paper

to be examined. Logically speaking, a zone from the original

web page can be placed on top of the suspect page, and the

elements falling in this window can be extracted and

compared with the corresponding elements in the zone. The

algorithm for zone comparison is as shown below –

1. Let cur_zone (x1,y1) (x2,y2) be a zone from the

original web page.

2. Extract elements from the suspect web page, that fall

within these coordinates:

a. Consider an unmarked element (ex1,ey1)

and (ex2,ey2). If the element, completely

falls inside (x1,y1) and (x2,y2) then add it to

the list of selected elements and mark it.

b. If more than 50% of the area defined by

(ex1,ey1) and (ex2,ey2) falls inside

cur_zone, then add it to the list of selected

elements and mark it.

3. Perform an element level comparison:

a. Segregate elements in the list formed in step

2 into different vectors as – images, links,

lines, input elements, text segments and so

on. Similar segregation is done for the

elements in ‘cur_zone’ as well.

b. The vector comparison is done on the basis

of individual properties [3]. The criteria

used is as described below:

Images – dimension, alt, position

(x1,y1) and (x2,y2).

Links – dimension, position (x1,y1)

and (x2,y2), href, value.

Input elements - dimension,

position (x1,y1) and (x2,y2), type.

For example, consider two images: 1 original (A) and 1

suspect (B), obtained from two corresponding vectors.

difference_area =

area defined by the coordinates:

(max(Ax1,Bx1),max(Ay1,By1)),(min(Ax2,Bx2),

min(Ay2,By2))

total_area = combined area of two images

(compensating for overlap portion)

In case of non-overlapping images, difference_area is set to 0.

Two main structural distortion factors:

i) Dimensional distortion (dim) =

difference_area / total_area

 ii) “alt” attribute distortion (alt) =

percentage difference between the two “alt” strings, based

on Levenstein algorithm [5].

Consider two tunable factors: F1 and F2, having initial

values 5 and 2 respectively. F1 gives more preference to

dimensional distortion and F2, to alt attribute distortion.

Distortion for an image pair with respect to zone: Zone_i –

 (1)

Distortion percentage for all images in the zone:

i) Let W1, W2, W3, ... Wn, be the weights or the image

area of the individual images in the zones under consideration.

ii) Averaging factor for each image:

 (2)

Total distortion percentage for images:

 (3)

Similar distortion percentages would be calculated for links,

input elements etc.

c. Also consider visual properties of the

container element. The comparison

essentially follows a bottom up approach,

starting from the elements towards their

nearest common parent.

4. After all the zones have been processed, there exists

a list of percentages one for each of the zones.

5. Weights are assigned to the zones in a decreasing

order of priority of logos, images, input elements,

links and finally other HTML elements.

6. Using these individual weights and distortion

percentages, a weighted average is calculated and

returned according to the following formula –

(4)

Where,

ZNp : Zone percentage(mismatch%),

Z1w : Zone weight.

From the list of percentages derived for each of the pages in

the base set, we select the page satisfying a pre-defined

threshold as the corresponding original page. Thus at the end

of this module, we can not only identify whether the suspect

page is phished or authentic but also quantify it, based on the

distortion percentage obtained. In other words, given a

distortion percentage – ‘dp’, we can state that:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1931International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

- The suspect page is phished, if dp > 0.

- The suspect page differs from the original page by a

measure of ‘dp %’.

The original page detected in this process may be displayed

to the user, as a confirmation mechanism. This can provide a

foundation for a more enhanced form of user education,

against phishing.

The case where none of the pages in the base set satisfy the

criteria (threshold) has two possibilities:

Either the suspect page is highly distorted

Or, the corresponding original page is not present in

the zone map database.

In such a case, the server sends an output back to the user

agent labeled “non-deterministic”.

V. EXPERIMENTS

We conducted the tests with approximately 70-90 URL’s,

the outcome of which was optimistic. Included in this test set

were “phished” pages, then available on the internet, spoofed

web sites developed by our team, and some authentic pages as

well. Table V lists some of the prominent spoofed web sites,

which the server was able to detect, among many others.

The success rate was calculated as 81 %. The authentic

pages were used to test if the system reported any false

positives. In 95 % of these tests, the pages were correctly

identified as being authentic. The remaining 5% pages were

deemed non-deterministic, due to the fact that those original

pages were not incorporated in the database, at that point of

time.
TABLE V

EXPERIMENT RESULTS

Suspect URL Distortion

http://218.108.235.43/.cgi-

bin/.webscr/

12.65 %

http://62.60.137.21/articles/.paypal

.com/secured/login/cmd=_login

32.92 %

http://62.60.137.21/articles/.paypal

.com/secured/login/cmd=_login

11 %

http://www.chileaoe.com/db/cig/up

date.html

21.5 %

http://195.137.222.129/Amazon/w

ww.amazon.com/

20 %

But, none of the authentic pages were labeled as being

“phished”, which is a significant achievement. However, one

of the tests discovered a weakness in the current design of

structural matching. In case of pages, having lesser number of

keywords, and having a visual layout matching the original

page, but constructed with images, it gives a wrong indication

of the matching percentage. Such pages could escape the

detection process. Although this is a rare scenario, measures

like image correlation and structural matching at a deeper

granularity could minimize such risks.

 On an average, 50KB of storage is required for a zone map.

If we consider 10 pages per web site, for a collection of 1

million sites, the total size of the zone map database comes to

500 gigabytes of storage, which is quite feasible. However,

the turnaround time for the server response ranges from 15

seconds to over 2 minutes, depending upon the size of the

base set, which is considerable and needs to be improved.

VI. CONCLUSION AND FUTURE WORK

This paper highlighted a novel, completely automated

approach against phishing. Undoubtedly, having the original

page to prove whether the suspect page is phished or

authentic, is the ideal mechanism for providing security. Its

role in reducing zero day attacks is remarkable. Moreover,

having a foolproof solution against phishing is more important

than an ineffectual, faster solution. A success rate of 81%

brings this design closer to the ideal solution than others,

existing in the market. At the same time, there are some

proposed improvements:

i) User education – Giving details of visual distortion, using

color codes.

ii) User polling – In case of nondeterministic output,

enabling user to vote, whether a page is phished or not.

iii) Improving structural matching – also incorporating an

image processing mechanism.

 iv) Improving the response time of the system.

ACKNOWLEDGMENT

Chinmay Soman thanks Mr. Abhay Shete for his precious

guidance in formulating the categorization scheme.

REFERENCES

[1] David Watson, Thorsten Holz and Sven Mueller, -“Know your enemy:

Phishing, behind the scenes of Phishing attacks”, The Honeynet Project

& Research Alliance.

[2] Rachna Dhamija, J. D. Tygar, Marti Hearst - “Why Phishing works”

[3] HTML element – wikipedia

http://en.wikipedia.org/wiki/HTML_element

[4] Anti Phishing Working Group – Phishing Activity Trends Report –

September, October 2006, and September 2007.

[5] Levenstein, A., Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady 10 (1966):707–710

[6] Jie Zou, Daniel Le and George R. Thoma “Combining DOM tree and

geometric layout analysis for onine medical journal article

segmentation”, National Library of Medicine.

[7] Steven Abney – “Parts Of Speech Tagging (POS) and Partial Parsing”,

1996

[8] Dino Esposito, “Browser helper Objects: The Browser the Way You

Want It”, Microsoft-Corporation http://msdn2.microsoft.com/en-

us/library/bb250436.aspx

[9] Min Wu, Robert C. Miller and Greg Little – “Web Wallet: Preventing

Phishing attacks by revealing user intentions”, MIT Computer Science

and Artificial Intelligence Lab.

[10] Jonathan Zdziarski, Weilai Yang and Paul Judge – “Approaches to

Phishing identification using match and probabilistic digital

fingerprinting techniques.”, CipherTrust, Inc.

[11] Suhit Gupta, Gail Kaiser, David Neistadt and Peter Grimm – “DOM-

based Content Extraction of HTML Documents”.

[12] Tod Beardsley – “Phishing detection and prevention: practical counter-

fraud solutions”.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1932International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

[13] Min Wu, Robert C. Miller, Simson L. Garfinkel – “Do security toolbars

actually prevent Phishing attacks?”, MIT Computer Science and

Artificial Intelligence Lab.

[14] Lorrie Cranor, Serge Egelman, Jason Hong, and Yue Zhang – “Phinding

Phish: An evaluation of anti-Phishing toolbars”, CyLab, Carnegie

Mellon University.

[15] Sujata Garera, Niels Provos, Monica Chew and Aviel D. Rubin – “A

framework for eetection and measurement of Phishing attacks”.

[16] http://www.gartner.com/it/page.jsp? id=5 65125

[17] The Zero-Day Attack, PC magazine,

[18] http://www.pcmag.com/article2/0,1759,1880013,00.asp

[19] False positives : Type I and type II errors, wikipedia -

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors

[20] Content Distribution Network, Wikipedia –

http://en.wikipedia.org/wiki/Coral_Content_Distribution_Network

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008

1933International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

59
9.

pd
f

