Search results for: parameter identification.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2007

Search results for: parameter identification.

1587 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
1586 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: Big data, image processing, multispectral, principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101
1585 Gravitino Dark Matter in (nearly) SLagy D3/D7 m-Split SUSY

Authors: Mansi Dhuria, Aalok Misra

Abstract:

In the context of large volume Big Divisor (nearly) SLagy D3/D7 μ-Split SUSY [1], after an explicit identification of first generation of SM leptons and quarks with fermionic superpartners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate by explicitly calculating the decay life times of gravitino (LSP) to be greater than age of universe and lifetimes of decays of the co-NLSPs (the first generation squark/slepton and a neutralino) to the LSP (the gravitino) to be very small to respect BBN constraints. Interested in non-thermal production mechanism of gravitino, we evaluate the relic abundance of gravitino LSP in terms of that of the co-NLSP-s by evaluating their (co-)annihilation cross sections and hence show that the former satisfies the requirement for a potential Dark Matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

Keywords: Split Supersymmetry, Large Volume Swiss-Cheese Calabi-Yau's, Dark Matter, (N)LSP decays, relic abundance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1584 Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading Hydrocarbon Contaminants on Saudi Arabian Environment

Authors: Amr A. El Hanafy, Yasir Anwar, Saleh A. Mohamed, Saleh Mohamed Saleh Al-Garni, Jamal S. M. Sabir, Osama A. H. Abu Zinadah, Mohamed Morsi Ahmed

Abstract:

In the vicinity of red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54%) and Penicillium commune (48%) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has capability of degradation and can be utilize for cleaning the Saudi Arabian environment.

Keywords: Fungal strains, hydrocarbon contaminants, molecular identification, biodegradation, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
1583 A Study of the Costs and Benefits of Smart City Projects Including the Scenario of Public-Private Partnerships

Authors: Patrick T. I. Lam, Wenjing Yang

Abstract:

A smart city project embraces benefits and costs which can be classified under direct and indirect categories. Externalities come into the picture, but they are often difficult to quantify. Despite this barrier, policy makers need to carry out cost-benefit analysis to justify the huge investments needed to make a city smart. The recent trend is towards the engagement of the private sector to utilize their resources and expertise, especially in the Information and Communication Technology (ICT) areas, where innovations blossom. This study focuses on the identification of costs (on a life cycle basis) and benefits associated with smart city project developments based on a comprehensive literature review and case studies, where public-private partnerships would warrant consideration, the related costs and benefits are highlighted. The findings will be useful for policy makers of cities.

Keywords: Costs and benefits, identification, public-private partnerships, smart city projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1582 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1581 Performance Indicators for Benchmarking of Internal Supply Chain Management

Authors: Kailash, Rajeev Kumar Saha, Sanjeev Goyal

Abstract:

Each and every manufacturing industry has a goal that describes its purpose and destination. The goal of any industry may be achieved by team work and managerial skills of all departments. However, achieving goals and objectives is not enough to improve the internal supply chain management performance of manufacturing industries therefore proper identification of performance indicators for benchmarking of internal supply chain management is essential for the growth of manufacturing industry. The identification of benchmarking performance indicators and their impact on internal supply chain management performance is vital for productivity and performance improvement. This study identifies the benchmarking performance indicators to improve internal supply chain performance of Indian manufacturing industries through literature review.

Keywords: Benchmarking, Internal supply chain management, performance indicators, scenario of Indian manufacturing industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1580 Route Training in Mobile Robotics through System Identification

Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings

Abstract:

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1579 Developing New Processes and Optimizing Performance Using Response Surface Methodology

Authors: S. Raissi

Abstract:

Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.

Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
1578 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1577 Screening and Identification of Microorganisms – Potential Producers of Arachidonic Acid

Authors: A. V. Goncharova, T. A. Karpenyuk, Y. S. Tsurkan, R. U. Beisembaeva, A. M. Kalbaeva, T. D. Mukasheva, L. V. Ignatova

Abstract:

Microorganisms isolated from water and soil of Kazakhstan to identify potential high-effective producers of the arachidonic acid, exhibiting a wide range of physiological activity and having practical applications were screened. Based on the results of two independent tests (the test on the sensitivity of the growth processes of microorganisms to acetylsalicylic acid - an irreversible inhibitor of PGH-synthase involved in the metabolism of arachidonic acid and its derivatives, the test for inhibition of peroxidase activity of membrane-bounding fraction of PGH - synthase by acetylsalicylic acid) were selected microbial cultures which are potential highproducer of arachidonic acid. They are characterized by a stable strong growth in the laboratory conditions. Identification of microorganism cultures based on morphological, physiological, biochemical and molecular genetic characteristics was performed.

Keywords: Arachidonic acid, aspirin-sensitive culture, bacteria, producers, screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1576 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
1575 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

Authors: A. Mahdy

Abstract:

In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.

Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
1574 Identification of an Appropriate Alternative Waste Technology for Energy Recovery from Waste through Multi-Criteria Analysis

Authors: Sharmina Begum, M. G. Rasul, Delwar Akbar

Abstract:

Waste management is now a global concern due to its high environmental impact on climate change. Because of generating huge amount of waste through our daily activities, managing waste in an efficient way has become more important than ever. Alternative Waste Technology (AWT), a new category of waste treatment technology has been developed for energy recovery in recent years to address this issue. AWT describes a technology that redirects waste away from landfill, recovers more useable resources from the waste flow and reduces the impact on the surroundings. Australia is one of the largest producers of waste per-capita. A number of AWTs are using in Australia to produce energy from waste. Presently, it is vital to identify an appropriate AWT to establish a sustainable waste management system in Australia. Identification of an appropriate AWT through Multi-criteria analysis (MCA) of four AWTs by using five key decision making criteria is presented and discussed in this paper.

Keywords: Alternative waste technology (AWT), Energy fromwaste, Gasification, Multi-criteria Analysis (MCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1573 Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter

Authors: Josu Arteche, Jesus Orbe

Abstract:

The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.

Keywords: bootstrap, confidence interval, log periodogram regression, long memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1572 Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

Authors: Mohamed Ali

Abstract:

The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. The surface temperature is assumed to vary inversely with the vertical direction x for n = -1. The skin friction at the surface scales as (x-1/2) at m = 0. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as the buoyancy parameter λ and the suction/injection parameter fw for air (Pr = 0.72) are studied. The choice of n and m ensures that the used similarity solutions are x independent. The results show that, assisting flow (λ > 0) enhancing the heat transfer coefficient along the surface for any constant value of fw. Furthermore, injection increases the heat transfer coefficient but suction reduces it at constant λ.

Keywords: Stretching surface, Boundary layers, Prescribed skin friction, Suction or injection, similarity solutions, buoyancy effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1571 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System

Authors: A. Jalal, S. Kim

Abstract:

Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.

Keywords: Ubiquitous architecture, verification, Identification, recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1570 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296
1569 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1568 Gasifier System Identification for Biomass Power Plants using Neural Network

Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai

Abstract:

The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.

Keywords: Gasifier System, Identification, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1567 Using the Technology-Organization-Environment Framework and Zuboff’s Concepts for Understanding Environmental Sustainability and RFID: Two Case Studies

Authors: Rebecca Angeles

Abstract:

Radio frequency identification (RFID) has been recognized as a key enabler of efficient and effective supply chains. Recently, with increasing concern for environmental sustainability, researchers and practitioners have been exploring the role of RFID in supporting “green supply chains.” This qualitative study uses the technology-organization-environment framework of Tornatzky and Fleischer, and Zuboff’s concepts of automating-informating-transformating in analyzing two case studies involving RFID use: the recycling of Hewlett Packard inkjet printers and the garbage and recycling program of the City of Grand Rapids, Michigan.

Keywords: Environmental sustainability, green supply chain management, radio frequency identification, technology-organization-environment framework, Zuboff’automate-informate-transformate concepts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5700
1566 Craniometric Analysis of Foramen Magnum for Estimation of Sex

Authors: Tanuj Kanchan, Anadi Gupta, Kewal Krishan

Abstract:

Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.

Keywords: Forensic Anthropology, Skeletal remains, Identification, Sex estimation, Foramen magnum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
1565 A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

Authors: Min Sun, Jing Liu

Abstract:

The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.

Keywords: Interval-valued intuitionistic fuzzy sets, intervalvalued intuitionistic fuzzy entropy, multiple attribute decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1564 Identification of PIP Aquaporin Genes from Wheat

Authors: Sh. A. Yousif, M. Bhave

Abstract:

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Keywords: Aquaporins, homeologues, PIP, wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
1563 Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae

Authors: Manatchanok Tantiphiphatthana, Lin Peng, Rujira Jitrwung, Kunio Yoshikawa

Abstract:

Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery.

Keywords: Bio-oil, Hydrothermal Liquefaction, Microalgae, Aqueous co-product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
1562 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1561 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs

Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas

Abstract:

In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).

Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3124
1560 Identification of Ductile Damage Parameters for Austenitic Steel

Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka

Abstract:

The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.

Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737
1559 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam

Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin

Abstract:

Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.

Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
1558 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual

Abstract:

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833