Search results for: internet identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1610

Search results for: internet identification

1190 Cross Signal Identification for PSG Applications

Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu

Abstract:

The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.

Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1189 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain and how various stakeholders will interact with the system.

Keywords: Internet of Things, IoT, blockchain, data integrity, authentication, data privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
1188 Evolutionary Program Based Approach for Manipulator Grasping Color Objects

Authors: Y. Harold Robinson, M. Rajaram, Honey Raju

Abstract:

Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.

Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1187 Analyzing Preservice Teachers’ Attitudes towards Technology

Authors: Ahmet Oguz Akturk, Kemal Izci, Gurbuz Caliskan, Ismail Sahin

Abstract:

Rapid developments in technology in the present age have made it necessary for communities to follow technological developments and adapt themselves to these developments. One of the fields that are most rapidly affected by these developments is undoubtedly education. Determination of the attitudes of preservice teachers, who live in an age of technology and get ready to raise future individuals, is of paramount importance both educationally and professionally. The purpose of this study was to analyze attitudes of preservice teachers towards technology and some variables that predict these attitudes (gender, daily duration of internet use, and the number of technical devices owned). 329 preservice teachers attending the education faculty of a large university in central Turkey participated, on a volunteer basis, in this study, where relational survey model was used as the research method. Research findings reveal that preservice teachers’ attitudes towards technology are positive and at the same time, the attitudes of male preservice teachers towards technology are more positive than their female counterparts. As a result of the stepwise multiple regression analysis where factors predicting preservice teachers’ attitudes towards technology, it was found that duration of daily internet use was the strongest predictor of attitudes towards technology.

Keywords: Attitudes towards technology, preservice teachers, gender, stepwise multiple regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1186 Clubs Forming on Crazyvote -The Blurred Social Boundary Between Online Communities and the Real World

Authors: Ko-Hsun Huang, Hsiao-Chen You, Yi-Shin Deng

Abstract:

With the rapid growth and development of information and communication technology, the Internet has played a definite and irreplaceable role in people-s social lives in Taiwan like in other countries. In July 2008, on a general social website, an unexpected phenomenon was noticed – that there were more than one hundred users who started forming clubs voluntarily and having face-to-face gatherings for specific purposes. In this study, it-s argued whether or not teenagers- social contact on the Internet is involved in their life context, and tried to reveal the teenagers- social preferences, values, and needs, which merge with and influence teenagers- social activities. Therefore, the study conducts multiple user experience research methods, which include practical observations and qualitative analysis by contextual inquiries and in-depth interviews. Based on the findings, several design implications for software related to social interactions and cultural inheritance are offered. It is concluded that the inherent values of a social behaviors might be a key issue in developing computer-mediated communication or interaction designs in the future.

Keywords: Social Computing, Social Interaction, User-centered Design, Contextual Inquiry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1185 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
1184 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: Big data, image processing, multispectral, principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95
1183 A Multimedia Telemonitoring Network for Healthcare

Authors: Hariton N. Costin, Sorin Puscoci, Cristian Rotariu, Bogdan Dionisie, Marinela C. Cimpoesu

Abstract:

TELMES project aims to develop a securized multimedia system devoted to medical consultation teleservices. It will be finalized with a pilot system for a regional telecenters network that connects local telecenters, having as support multimedia platforms. This network will enable the implementation of complex medical teleservices (teleconsulations, telemonitoring, homecare, urgency medicine, etc.) for a broader range of patients and medical professionals, mainly for family doctors and those people living in rural or isolated regions. Thus, a multimedia, scalable network, based on modern IT&C paradigms, will result. It will gather two inter-connected regional telecenters, in Iaşi and Piteşti, Romania, each of them also permitting local connections of hospitals, diagnostic and treatment centers, as well as local networks of family doctors, patients, even educational entities. As communications infrastructure, we aim to develop a combined fixmobile- internet (broadband) links. Other possible communication environments will be GSM/GPRS/3G and radio waves. The electrocardiogram (ECG) acquisition, internet transmission and local analysis, using embedded technologies, was already successfully done for patients- telemonitoring.

Keywords: Healthcare, telemedicine, telemonitoring, ECG analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1182 Gravitino Dark Matter in (nearly) SLagy D3/D7 m-Split SUSY

Authors: Mansi Dhuria, Aalok Misra

Abstract:

In the context of large volume Big Divisor (nearly) SLagy D3/D7 μ-Split SUSY [1], after an explicit identification of first generation of SM leptons and quarks with fermionic superpartners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate by explicitly calculating the decay life times of gravitino (LSP) to be greater than age of universe and lifetimes of decays of the co-NLSPs (the first generation squark/slepton and a neutralino) to the LSP (the gravitino) to be very small to respect BBN constraints. Interested in non-thermal production mechanism of gravitino, we evaluate the relic abundance of gravitino LSP in terms of that of the co-NLSP-s by evaluating their (co-)annihilation cross sections and hence show that the former satisfies the requirement for a potential Dark Matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

Keywords: Split Supersymmetry, Large Volume Swiss-Cheese Calabi-Yau's, Dark Matter, (N)LSP decays, relic abundance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
1181 Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading Hydrocarbon Contaminants on Saudi Arabian Environment

Authors: Amr A. El Hanafy, Yasir Anwar, Saleh A. Mohamed, Saleh Mohamed Saleh Al-Garni, Jamal S. M. Sabir, Osama A. H. Abu Zinadah, Mohamed Morsi Ahmed

Abstract:

In the vicinity of red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54%) and Penicillium commune (48%) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has capability of degradation and can be utilize for cleaning the Saudi Arabian environment.

Keywords: Fungal strains, hydrocarbon contaminants, molecular identification, biodegradation, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
1180 A Study of the Costs and Benefits of Smart City Projects Including the Scenario of Public-Private Partnerships

Authors: Patrick T. I. Lam, Wenjing Yang

Abstract:

A smart city project embraces benefits and costs which can be classified under direct and indirect categories. Externalities come into the picture, but they are often difficult to quantify. Despite this barrier, policy makers need to carry out cost-benefit analysis to justify the huge investments needed to make a city smart. The recent trend is towards the engagement of the private sector to utilize their resources and expertise, especially in the Information and Communication Technology (ICT) areas, where innovations blossom. This study focuses on the identification of costs (on a life cycle basis) and benefits associated with smart city project developments based on a comprehensive literature review and case studies, where public-private partnerships would warrant consideration, the related costs and benefits are highlighted. The findings will be useful for policy makers of cities.

Keywords: Costs and benefits, identification, public-private partnerships, smart city projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1179 Performance Indicators for Benchmarking of Internal Supply Chain Management

Authors: Kailash, Rajeev Kumar Saha, Sanjeev Goyal

Abstract:

Each and every manufacturing industry has a goal that describes its purpose and destination. The goal of any industry may be achieved by team work and managerial skills of all departments. However, achieving goals and objectives is not enough to improve the internal supply chain management performance of manufacturing industries therefore proper identification of performance indicators for benchmarking of internal supply chain management is essential for the growth of manufacturing industry. The identification of benchmarking performance indicators and their impact on internal supply chain management performance is vital for productivity and performance improvement. This study identifies the benchmarking performance indicators to improve internal supply chain performance of Indian manufacturing industries through literature review.

Keywords: Benchmarking, Internal supply chain management, performance indicators, scenario of Indian manufacturing industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1178 Route Training in Mobile Robotics through System Identification

Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings

Abstract:

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1177 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1176 Screening and Identification of Microorganisms – Potential Producers of Arachidonic Acid

Authors: A. V. Goncharova, T. A. Karpenyuk, Y. S. Tsurkan, R. U. Beisembaeva, A. M. Kalbaeva, T. D. Mukasheva, L. V. Ignatova

Abstract:

Microorganisms isolated from water and soil of Kazakhstan to identify potential high-effective producers of the arachidonic acid, exhibiting a wide range of physiological activity and having practical applications were screened. Based on the results of two independent tests (the test on the sensitivity of the growth processes of microorganisms to acetylsalicylic acid - an irreversible inhibitor of PGH-synthase involved in the metabolism of arachidonic acid and its derivatives, the test for inhibition of peroxidase activity of membrane-bounding fraction of PGH - synthase by acetylsalicylic acid) were selected microbial cultures which are potential highproducer of arachidonic acid. They are characterized by a stable strong growth in the laboratory conditions. Identification of microorganism cultures based on morphological, physiological, biochemical and molecular genetic characteristics was performed.

Keywords: Arachidonic acid, aspirin-sensitive culture, bacteria, producers, screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1175 Identification of an Appropriate Alternative Waste Technology for Energy Recovery from Waste through Multi-Criteria Analysis

Authors: Sharmina Begum, M. G. Rasul, Delwar Akbar

Abstract:

Waste management is now a global concern due to its high environmental impact on climate change. Because of generating huge amount of waste through our daily activities, managing waste in an efficient way has become more important than ever. Alternative Waste Technology (AWT), a new category of waste treatment technology has been developed for energy recovery in recent years to address this issue. AWT describes a technology that redirects waste away from landfill, recovers more useable resources from the waste flow and reduces the impact on the surroundings. Australia is one of the largest producers of waste per-capita. A number of AWTs are using in Australia to produce energy from waste. Presently, it is vital to identify an appropriate AWT to establish a sustainable waste management system in Australia. Identification of an appropriate AWT through Multi-criteria analysis (MCA) of four AWTs by using five key decision making criteria is presented and discussed in this paper.

Keywords: Alternative waste technology (AWT), Energy fromwaste, Gasification, Multi-criteria Analysis (MCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1174 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System

Authors: A. Jalal, S. Kim

Abstract:

Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.

Keywords: Ubiquitous architecture, verification, Identification, recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1173 Gasifier System Identification for Biomass Power Plants using Neural Network

Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai

Abstract:

The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.

Keywords: Gasifier System, Identification, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1172 A Method for Identifying Physical Parameters with Linear Fractional Transformation

Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim

Abstract:

This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.

Keywords: Identification, Linear Fractional Transformation, Right inverse system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
1171 Using the Technology-Organization-Environment Framework and Zuboff’s Concepts for Understanding Environmental Sustainability and RFID: Two Case Studies

Authors: Rebecca Angeles

Abstract:

Radio frequency identification (RFID) has been recognized as a key enabler of efficient and effective supply chains. Recently, with increasing concern for environmental sustainability, researchers and practitioners have been exploring the role of RFID in supporting “green supply chains.” This qualitative study uses the technology-organization-environment framework of Tornatzky and Fleischer, and Zuboff’s concepts of automating-informating-transformating in analyzing two case studies involving RFID use: the recycling of Hewlett Packard inkjet printers and the garbage and recycling program of the City of Grand Rapids, Michigan.

Keywords: Environmental sustainability, green supply chain management, radio frequency identification, technology-organization-environment framework, Zuboff’automate-informate-transformate concepts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5698
1170 Craniometric Analysis of Foramen Magnum for Estimation of Sex

Authors: Tanuj Kanchan, Anadi Gupta, Kewal Krishan

Abstract:

Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.

Keywords: Forensic Anthropology, Skeletal remains, Identification, Sex estimation, Foramen magnum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
1169 Identification of PIP Aquaporin Genes from Wheat

Authors: Sh. A. Yousif, M. Bhave

Abstract:

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Keywords: Aquaporins, homeologues, PIP, wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1168 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs

Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas

Abstract:

In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).

Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
1167 Identification of Ductile Damage Parameters for Austenitic Steel

Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka

Abstract:

The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.

Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3736
1166 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam

Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin

Abstract:

Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.

Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
1165 Enhancing IoT Security: A Blockchain-Based Approach for Preventing Spoofing Attacks

Authors: Salha Alshamrani, Maha Aljohni, Eman Aldhaheri

Abstract:

With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.

Keywords: Internet of Thing, Spoofing, IoT, Access control, Blockchain, Raspberry pi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118
1164 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual

Abstract:

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1163 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm

Authors: Sudipta Majumdar

Abstract:

This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.

Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
1162 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
1161 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study

Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh

Abstract:

Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.

Keywords: Education, smartphone, social networks, teenagers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524