Search results for: Social network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11725

Search results for: Social network analysis

11305 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: Neural networks, pattern learning, security, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
11304 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
11303 Stochastic Estimation of Wireless Traffic Parameters

Authors: Somenath Mukherjee, Raj Kumar Samanta, Gautam Sanyal

Abstract:

Different services based on different switching techniques in wireless networks leads to drastic changes in the properties of network traffic. Because of these diversities in services, network traffic is expected to undergo qualitative and quantitative variations. Hence, assumption of traffic characteristics and the prediction of network events become more complex for the wireless networks. In this paper, the traffic characteristics have been studied by collecting traces from the mobile switching centre (MSC). The traces include initiation and termination time, originating node, home station id, foreign station id. Traffic parameters namely, call interarrival and holding times were estimated statistically. The results show that call inter-arrival and distribution time in this wireless network is heavy-tailed and follow gamma distributions. They are asymptotically long-range dependent. It is also found that the call holding times are best fitted with lognormal distribution. Based on these observations, an analytical model for performance estimation is also proposed.

Keywords: Wireless networks, traffic analysis, long-range dependence, heavy-tailed distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
11302 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
11301 Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks

Authors: Toshihiko Sasama, Kentaro Kishida, Kazunori Sugahara, Hiroshi Masuyama

Abstract:

A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.

Keywords: cluster, mobile ad hoc network, re-routing cost, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
11300 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement

Authors: Craig M. Allen

Abstract:

Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.

Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
11299 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate

Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand

Abstract:

Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.

Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4811
11298 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: Neural network, rule extraction, rule insertion, self-organizing map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
11297 An Address-Oriented Transmit Mechanism for GALS NoC

Authors: Yuanyuan Zhang, Guang Sun, Li Su, Depeng Jin, Lieguang Zeng

Abstract:

Since Network-on-Chip (NoC) uses network interfaces (NIs) to improve the design productivity, by now, there have been a few papers addressing the design and implementation of a NI module. However, none of them considered the difference of address encoding methods between NoC and the traditional bus-shared architecture. On the basis of this difference, in the paper, we introduce a transmit mechanism to solve such a problem for global asynchronous locally synchronous (GALS) NoC. Furthermore, we give the concrete implementation of the NI module in this transmit mechanism. Finally, we evaluate its performance and area overhead by a VHDL-based cycle-accurate RTL model and simulation results confirm the validity of this address-oriented transmit mechanism.

Keywords: Network-on-Chip, Network Interface, Open CoreProtocol, Address.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
11296 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

Authors: Jain-Shing Liu

Abstract:

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
11295 Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Authors: Nahid Ghasemi, Mohammad Goodarzi, Morteza Khosravi

Abstract:

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

Keywords: Phenol, Resorcinol, Catechol, Principal componentrankingArtificial Neural Network, Chemometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
11294 Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

Authors: Tarik Rashid, B. Q. Huang, M-T. Kechadi, B. Gleeson

Abstract:

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Keywords: Daily peak load forecasting, neural networks, recurrent neural networks, auto regressive multi-context neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
11293 Secure Socket Layer in the Network and Web Security

Authors: Roza Dastres, Mohsen Soori

Abstract:

In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.

Keywords: Secure Socket Layer, Security of networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
11292 A New Method of Combined Classifier Design Based on Fuzzy Neural Network

Authors: Kexin Jia, Youxin Lu

Abstract:

To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a novel method of designing combined classifier based on fuzzy neural network (FNN) is presented in this paper. The method employs fuzzy neural network classifiers and interclass distance (ICD) to improve recognition reliability. Experimental results show that the proposed combined classifier has high recognition rate with large variation range of SNR (success rates are over 99.9% when SNR is not lower than 5dB).

Keywords: Modulation classification, combined classifier, fuzzy neural network, interclass distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
11291 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of supervisory control and data acquisition system (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide area measurement system (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of Matlab based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: DFT-Discrete Fourier Transform, GPS-Global Positioning System, PMU-Phasor Measurement System, WAMS-Wide Area Monitoring System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
11290 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
11289 A Social Decision Support Mechanism for Group Purchasing

Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh

Abstract:

With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.

Keywords: Social network, group decision, text mining, group commerce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
11288 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: Blue-Green landscape network, city crossing river, four-dimensional analysis method, planning order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
11287 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: Big data, correlation analysis, data recommendation system, urban data network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
11286 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
11285 Effect of Social Media on Knowledge Work

Authors: Pekka Makkonen, Georgios Lampropoulos, Kerstin Siakas

Abstract:

This paper examines the impact of social media on knowledge work. It discloses and highlights which specific aspects, areas and tasks of knowledge work can be improved by the use of social media. Moreover, the study includes a survey about higher education students’ viewpoints in regard to the use of social media as a means to enhance knowledge work and knowledge sharing. The analysis has been conducted based both on empirical data and on discussions about the sources dealing with knowledge work and how it can be enhanced by using social media. The results show that social media can improve knowledge work, knowledge building and maintenance tasks in which communication, information sharing and collaboration play a vital role. Additionally, by using social media, personal, collaborative and supplementary work activities can be enhanced. Based on the results of the study, we suggest how knowledge work can be enhanced when using the contemporary information and communications technologies (ICTs) of the 21st century and recommend future directions towards improving knowledge work.

Keywords: Knowledge work, social media, social media services, improving work performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
11284 Clustering Approach to Unveiling Relationships between Gene Regulatory Networks

Authors: Hiba Hasan, Khalid Raza

Abstract:

Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.

Keywords: Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
11283 High Impedance Fault Detection using LVQ Neural Networks

Authors: Abhishek Bansal, G. N. Pillai

Abstract:

This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.

Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
11282 On the Analysis of Bandwidth Management for Hybrid Load Balancing Scheme in WLANs

Authors: Chutima Prommak, Airisa Jantaweetip

Abstract:

In wireless networks, bandwidth is scare resource and it is essential to utilize it effectively. This paper analyses effects of using different bandwidth management techniques on the network performances of the Wireless Local Area Networks (WLANs) that use hybrid load balancing scheme. In particular, we study three bandwidth management schemes, namely Complete Sharing (CS), Complete Partitioning (CP), and Partial Sharing (PS). Performances of these schemes are evaluated by simulation experiments in term of percentage of network association blocking. Our results show that the CS scheme can provide relatively low blocking percentage in various network traffic scenarios whereas the PS scheme can enhance quality of services of the multimedia traffic with rather small expenses on the blocking percentage of the best effort traffic.

Keywords: Bandwidth management, Load Balancing, WLANs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
11281 An Optical WDM Network Concept for Tanzania

Authors: S. Pazi, C. Chatwin, R. Young, P. Birch

Abstract:

Tanzania is a developing country, which significantly lags behind the rest of the world in information communications technology (ICT), especially for the Internet. Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet due to the high cost. This paper introduces the concept of an optical WDM network for Internet infrastructure in Tanzania, so as to reduce Internet connection costs, and provide Internet access to the majority of people who live in both urban and rural areas. We also present a proposed optical WDM network, which mitigates the effects of system impairments, and provide simulation results to show that the data is successfully transmitted over a longer distance using a WDM network.

Keywords: Internet infrastructure, Internet access, Internettraffic, WDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
11280 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
11279 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
11278 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: Queueing network, discrete-event simulation, health applications, SPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
11277 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
11276 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956