Search results for: Rule Based Modeling
12273 Modelling of the Fire Pragmatism in the Area of Military Management and Its Experimental Verification
Authors: Ivana Mokrá
Abstract:
The article deals with modelling of the fire pragmatism in the area of military management and its experimental verification. Potential approaches are based on the synergy of mathematical and theoretical ideas, operational and tactical requirements and the military decision-making process. This issue has taken on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophical point of view, these new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.
Keywords: Military management, decision-making process, strike modeling, experimental evaluation, pragmatism, tactical strike modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153112272 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162812271 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method
Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie
Abstract:
An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161412270 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.
Keywords: Dynamic model, Jeju power system, pitch angle control, PSS/E, wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176812269 A Generic e-Tutor for Graphical Problems
Authors: B.W. Field
Abstract:
For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.
Keywords: CAL, graphics, modeling, structural distillation, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141312268 Modeling of Catalyst Deactivation in Catalytic Wet Air Oxidation of Phenol in Fixed Bed Three-Phase Reactor
Authors: Akram Golestani, Mohammad Kazemeini, Farhad Khorasheh, Moslem Fattahi
Abstract:
Modeling and simulation of fixed bed three-phase catalytic reactors are considered for wet air catalytic oxidation of phenol to perform a comparative numerical analysis between tricklebed and packed-bubble column reactors. The modeling involves material balances both for the catalyst particle as well as for different fluid phases. Catalyst deactivation is also considered in a transient reactor model to investigate the effects of various parameters including reactor temperature on catalyst deactivation. The simulation results indicated that packed-bubble columns were slightly superior in performance than trickle beds. It was also found that reaction temperature was the most effective parameter in catalyst deactivation.Keywords: Catalyst deactivation, Catalytic wet air oxidation, Trickle-bed, Wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240412267 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314012266 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138112265 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: Activity modeling, clustering, PLSA, video representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84112264 Modeling and Analysis of Twelve-phase (Multi- Phase) DSTATCOM for Multi-Phase Load Circuits
Authors: Zakir Husain
Abstract:
This paper presents modeling and analysis of 12-phase distribution static compensator (DSTATCOM), which is capable of balancing the source currents in spite of unbalanced loading and phase outages. In addition to balance the supply current, the power factor can be set to a desired value. The theory of instantaneous symmetrical components is used to generate the twelve-phase reference currents. These reference currents are then tracked using current controlled voltage source inverter, operated in a hysteresis band control scheme. An ideal compensator in place of physical realization of the compensator is used. The performance of the proposed DTATCOM is validated through MATLAB simulation and detailed simulation results are given.
Keywords: DSTATCOM, Modeling, Load balancing, Multiphase, Power factor correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184012263 Localization of Anatomical Landmarks in Head CT Images for Image to Patient Registration
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
The use of anatomical landmarks as a basis for image to patient registration is appealing because the registration may be performed retrospectively. We have previously proposed the use of two anatomical soft tissue landmarks of the head, the canthus (corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), as a registration basis for an automated CT image to patient registration system, and described their localization in patient space using close range photogrammetry. In this paper, the automatic localization of these landmarks in CT images, based on their curvature saliency and using a rule based system that incorporates prior knowledge of their characteristics, is described. Existing approaches to landmark localization in CT images are predominantly semi-automatic and primarily for localizing internal landmarks. To validate our approach, the positions of the landmarks localized automatically and manually in near isotropic CT images of 102 patients were compared. The average difference was 1.2mm (std = 0.9mm, max = 4.5mm) for the medial canthus and 0.8mm (std = 0.6mm, max = 2.6mm) for the tragus. The medial canthus and tragus can be automatically localized in CT images, with performance comparable to manual localization, based on the approach presented.
Keywords: Anatomical Landmarks, CT, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332412262 Network Application Identification Based on Communication Characteristics of Application Messages
Authors: Yuji Waizumi, Yuya Tsukabe, Hiroshi Tsunoda, Yoshiaki Nemoto
Abstract:
A person-to-person information sharing is easily realized by P2P networks in which servers are not essential. Leakage of information, which are caused by malicious accesses for P2P networks, has become a new social issues. To prevent information leakage, it is necessary to detect and block traffics of P2P software. Since some P2P softwares can spoof port numbers, it is difficult to detect the traffics sent from P2P softwares by using port numbers. It is more difficult to devise effective countermeasures for detecting the software because their protocol are not public. In this paper, a discriminating method of network applications based on communication characteristics of application messages without port numbers is proposed. The proposed method is based on an assumption that there can be some rules about time intervals to transmit messages in application layer and the number of necessary packets to send one message. By extracting the rule from network traffic, the proposed method can discriminate applications without port numbers.Keywords: Network Application Identification, Message Transition Pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136012261 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modeling in Frustum Confining Vessel
Authors: Seyed Abolhasan Naeini, M. Mortezaee
Abstract:
Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vessel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firuzkuh, Iran. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.
Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49812260 Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference
Authors: Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping
Abstract:
Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.
Keywords: Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214412259 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.
Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331412258 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image
Authors: K. Muthukannan, P. Latha
Abstract:
In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188712257 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157912256 A Method for Modeling Multiple Antenna Channels
Authors: S. Rajabi, M. ArdebiliPoor, M. Shahabadi
Abstract:
In this paper we propose a method for modeling the correlation between the received signals by two or more antennas operating in a multipath environment. Considering the maximum excess delay in the channel being modeled, an elliptical region surrounding both transmitter and receiver antennas is produced. A number of scatterers are randomly distributed in this region and scatter the incoming waves. The amplitude and phase of incoming waves are computed and used to obtain statistical properties of the received signals. This model has the distinguishable advantage of being applicable for any configuration of antennas. Furthermore the common PDF (Probability Distribution Function) of received wave amplitudes for any pair of antennas can be calculated and used to produce statistical parameters of received signals.Keywords: MIMO (Multiple Input Multiple Output), SIMO (Single Input Multiple Output), GBSBEM (Geometrically Based Single Bounce Elliptical Model).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142112255 Dynamic Modeling of Underplateform Damper used in Turbomachinery
Authors: Vikas Rastogi, Vipan Kumar, Loveleen Kumar Bhagi
Abstract:
The present work deals with the structural analysis of turbine blades and modeling of turbine blades. A common failure mode for turbine machines is high cycle of fatigue of compressor and turbine blades due to high dynamic stresses caused by blade vibration and resonance within the operation range of the machinery. In this work, proper damping system will be analyzed to reduce the vibrating blade. The main focus of the work is the modeling of under platform damper to evaluate the dynamic analysis of turbine-blade vibrations. The system is analyzed using Bond graph technique. Bond graph is one of the most convenient ways to represent a system from the physical aspect in foreground. It has advantage of putting together multi-energy domains of a system in a single representation in a unified manner. The bond graph model of dry friction damper is simulated on SYMBOLS-shakti® software. In this work, the blades are modeled as Timoshenko beam. Blade Vibrations under different working conditions are being analyzed numerically.Keywords: Turbine blade vibrations, Friction dampers, Timoshenko Beam, Bond graph modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232712254 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading
Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla
Abstract:
Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.
Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126212253 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.
Keywords: ANN, biosorption, cadmium, packed-bed, potable water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212812252 Reduced Order Modeling of Natural Gas Transient Flow in Pipelines
Authors: M. Behbahani-Nejad, Y. Shekari
Abstract:
A reduced order modeling approach for natural gas transient flow in pipelines is presented. The Euler equations are considered as the governing equations and solved numerically using the implicit Steger-Warming flux vector splitting method. Next, the linearized form of the equations is derived and the corresponding eigensystem is obtained. Then, a few dominant flow eigenmodes are used to construct an efficient reduced-order model. A well-known test case is presented to demonstrate the accuracy and the computational efficiency of the proposed method. The results obtained are in good agreement with those of the direct numerical method and field data. Moreover, it is shown that the present reduced-order model is more efficient than the conventional numerical techniques for transient flow analysis of natural gas in pipelines.Keywords: Eigenmode, Natural Gas, Reduced Order Modeling, Transient Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193612251 The Measurement of Endogenous Higher-Order Formative Composite Variables in PLS-SEM: An Empirical Application from CRM System Development
Authors: Samppa Suoniemi, Harri Terho, Rami Olkkonen
Abstract:
In recent methodological articles related to structural equation modeling (SEM), the question of how to measure endogenous formative variables has been raised as an urgent, unresolved issue. This research presents an empirical application from the CRM system development context to test a recently developed technique, which makes it possible to measure endogenous formative constructs in structural models. PLS path modeling is used to demonstrate the feasibility of measuring antecedent relationships at the formative indicator level, not the formative construct level. Empirical results show that this technique is a promising approach to measure antecedent relationships of formative constructs in SEM.
Keywords: CRM system development, formative measures, PLS path modeling, research methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226112250 A Study on using N-Pattern Chains of Design Patterns based on Software Quality Metrics
Authors: Niloofar Khedri, Masoud Rahgozar, MahmoudReza Hashemi
Abstract:
Design patterns describe good solutions to common and reoccurring problems in program design. Applying design patterns in software design and implementation have significant effects on software quality metrics such as flexibility, usability, reusability, scalability and robustness. There is no standard rule for using design patterns. There are some situations that a pattern is applied for a specific problem and this pattern uses another pattern. In this paper, we study the effect of using chain of patterns on software quality metrics.Keywords: Design Patterns, Design patterns' Relationship, Software quality Metrics, Software Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157712249 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162512248 Proposition for a New Approach of Version Control System Based On ECA Active Rules
Authors: S. Benhamed, S. Hocine, D. Benhamamouch
Abstract:
We try to give a solution of version control for documents in web service, that-s why we propose a new approach used specially for the XML documents. The new approach is applied in a centralized repository, this repository coexist with other repositories in a decentralized system. To achieve the activities of this approach in a standard model we use the ECA active rules. We also show how the Event-Condition-Action rules (ECA rules) have been incorporated as a mechanism for the version control of documents. The need to integrate ECA rules is that it provides a clear declarative semantics and induces an immediate operational realization in the system without the need for human intervention.Keywords: ECA Rule, Web service, version control system, propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137312247 A New Approach to Polynomial Neural Networks based on Genetic Algorithm
Authors: S. Farzi
Abstract:
Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.Keywords: GMDH, GPNN, GA, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209312246 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modeling framework was developed to predict saturated hydraulic conductivity (Ksat) dynamics in the Clear Creek Watershed (CCW), Iowa. The modeling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the Ksat field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured Ksat values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of Ksat variability in CCW due to the seasonal changes in climate and land use activities.
Keywords: Saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254812245 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66112244 Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator
Authors: Bindu Sankar, Jaideep Chakraborty, Rashmi Nawlakha, A. Venkatesan, S. Raghupathy, T. Jayanthi, S.A.V. Satya Murty
Abstract:
Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.
Keywords: Animation, Core Handling System, Prototype Fast Breeder Reactor, Simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708