Search results for: Neural network controller.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3783

Search results for: Neural network controller.

3363 Emotion Recognition Using Neural Network: A Comparative Study

Authors: Nermine Ahmed Hendy, Hania Farag

Abstract:

Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time

Keywords: Classification, emotion recognition, features extraction, feature selection, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4697
3362 Design and Implementation of a Neural Network for Real-Time Object Tracking

Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan

Abstract:

Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.

Keywords: Image processing, machine vision, neural networks, real-time object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
3361 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IPprotocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: Quality of communication, IP-telephony, Fuzzy set, Fuzzy implication, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
3360 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
3359 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3358 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3032
3357 Learning Flexible Neural Networks for Pattern Recognition

Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh

Abstract:

Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.

Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
3356 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
3355 A Critics Study of Neural Networks Applied to ion-Exchange Process

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.

Keywords: Copper, ion-exchange process, neural networks, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
3354 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however, its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (poleplacement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: Adaptive control, bench-top helicopter, deadbeat, pole-placement, self-tuning control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3309
3353 Implementation Issues of Industrial PID Controller and Their Remedies

Authors: C. B. Vishwakarma

Abstract:

We elaborated the parallel and series Proportional, Integral and Derivative (PID) controllers, which are being used in industries. Various issues, which are very often faced by control engineers while designing the PID controllers for industrial systems are described. The effect of measurement noise on the actuator due to derivative term of a PID controller has been explained in detail. Similarly, proportional kick, derivative kick, saturation tendency of the actuator and reverse phenomena of an industrial process have been summarized. Moreover, we meticulously explained the remedies of the all issues of the parallel industrial PID controller.

Keywords: Band-width limited derivative control, derivative kick, proportional kick, reverse acting controller, series PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
3352 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468
3351 An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays

Authors: Ozlem Faydasicok, Sabri Arik

Abstract:

This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.

Keywords: Stability Analysis, Neutral-Type Neural Networks, Time Delay Systems, Lyapunov Functionals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
3350 Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim

Abstract:

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.

Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
3349 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Authors: Yahya H. Zweiri

Abstract:

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords: Neural Networks, Backpropagation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
3348 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
3347 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).

Keywords: Mininet, OpenFlow, POX controller, SDN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
3346 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
3345 STLF Based on Optimized Neural Network Using PSO

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
3344 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: Digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
3343 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks

Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian

Abstract:

Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.

Keywords: Desalting unit, Crude oil, Neural Networks, Simulation, Recovery, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4249
3342 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: Ride comfort, air spring, bus, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
3341 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
3340 Design of a Sliding Controller for Optical Disk Drives

Authors: Yu-Sheng Lu, Chung-Hsin Cheng, Shuen-Shing Jan

Abstract:

This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller.

Keywords: Mechatronics, optical disk drive, sliding-mode control, servo systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
3339 A PWM Controller with Multiple-Access Table Look-up for DC-DC Buck Conversion

Authors: Steve Hung-Lung Tu, Chu-Tse Lee

Abstract:

A new power regulator controller with multiple-access PID compensator is proposed, which can achieve a minimum memory requirement for fully table look-up. The proposed regulator controller employs hysteresis comparators, an error process unit (EPU) for voltage regulation, a multiple-access PID compensator and a lowpower- consumption digital PWM (DPWM). Based on the multipleaccess mechanism, the proposed controller can alleviate the penalty of large amount of memory employed for fully table look-up based PID compensator in the applications of power regulation. The proposed controller has been validated with simulation results.

Keywords: Multiple access, PID compensator, PWM, Buck conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
3338 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
3337 A PSO-based SSSC Controller for Improvement of Transient Stability Performance

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
3336 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

Authors: Dilip Kumar S.M, Vijaya Kumar B.P.

Abstract:

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.

Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
3335 PI Controller for Automatic Generation Control Based on Performance Indices

Authors: Kalyan Chatterjee

Abstract:

The optimal design of PI controller for Automatic Generation Control in two area is presented in this paper. The concept of Dual mode control is applied in the PI controller, such that the proportional mode is made active when the rate of change of the error is sufficiently larger than a specified limit otherwise switched to the integral mode. A digital simulation is used in conjunction with the Hooke-Jeeve’s optimization technique to determine the optimum parameters (individual gain of proportional and integral controller) of the PI controller. Integrated Square of the Error (ISE), Integrated Time multiplied by Absolute Error(ITAE) , and Integrated Absolute Error(IAE) performance indices are considered to measure the appropriateness of the designed controller.  The proposed controller are tested for a two area single nonreheat thermal system considering the practical aspect of the problem such as Deadband and Generation Rate Constraint(GRC). Simulation results show that  dual mode with optimized values of the gains improved the control performance than the commonly used Variable Structure .

Keywords: Load Frequency Control, Area Control Error(ACE), Dual Mode PI Controller, Performance Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
3334 State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

Authors: Dileep Malkhede, Bhartendu Seth

Abstract:

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.

Keywords: Diesel engine model, Engine speed control, State feedback controller, Controller robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221