Search results for: Real Coded Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5451

Search results for: Real Coded Genetic Algorithm

1101 Multiplayer RC-Car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative augmented reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: Multiplayer, RC-car, Collaborative Environment, Augmented Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
1100 Syntactic Recognition of Distorted Patterns

Authors: Marek Skomorowski

Abstract:

In syntactic pattern recognition a pattern can be represented by a graph. Given an unknown pattern represented by a graph g, the problem of recognition is to determine if the graph g belongs to a language L(G) generated by a graph grammar G. The so-called IE graphs have been defined in [1] for a description of patterns. The IE graphs are generated by so-called ETPL(k) graph grammars defined in [1]. An efficient, parsing algorithm for ETPL(k) graph grammars for syntactic recognition of patterns represented by IE graphs has been presented in [1]. In practice, structural descriptions may contain pattern distortions, so that the assignment of a graph g, representing an unknown pattern, to a graph language L(G) generated by an ETPL(k) graph grammar G is rejected by the ETPL(k) type parsing. Therefore, there is a need for constructing effective parsing algorithms for recognition of distorted patterns. The purpose of this paper is to present a new approach to syntactic recognition of distorted patterns. To take into account all variations of a distorted pattern under study, a probabilistic description of the pattern is needed. A random IE graph approach is proposed here for such a description ([2]).

Keywords: Syntactic pattern recognition, Distorted patterns, Random graphs, Graph grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1099 Periodic Control of a Wastewater Treatment Process to Improve Productivity

Authors: Muhammad Rizwan Azhar, Emadadeen Ali

Abstract:

In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.

Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
1098 Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology

Authors: Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab, Fatma H. Elfouly

Abstract:

Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the comparison between the Haar and Daubechies wavelets is investigated. The Bit Error Rat (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. It is seen that the BER using Daubechies wavelet techniques is less than Haar wavelet. The design procedure has been explained and designed using the stat-of-art Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4845
1097 Thai Teenage Prostitution Online

Authors: Somdech Rungsrisawat

Abstract:

The purposes of this research are to investigate Thai teens’ attitude toward prostitution on the internet, to discover the causes of teenage prostitution and to study the relationship between teenage promiscuity and the causes of teenage prostitution. This study is a mixed research which utilized both qualitative and quantitative approach. The population of this study included teenagers and early adults between 14-21 years old who were studying in high schools, colleges, or universities. A total of 600 respondents was sampled for interviews using a questionnaire, and 48 samples were chosen for an in-depth interview.

The findings revealed that the majority of respondents recognized that teenage prostitution on line was real. The reasons for choosing the internet to contact with customers included easy, convenient, safe, and anonymous. Moreover, the internet allowed teen prostitutes to contact customers anywhere and anytime. The correlation showed that promiscuity was related to the trend of teen prostitution. Other factors that contributed to increasing widespread teen prostitution online included their need for quick money to buy luxurious products and to support their extravagant behavior.

Keywords: Internet, Prostitutes, Online, Thai teens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3635
1096 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.

Keywords: Virtual routing function, NFV, resource allocation, minimum power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
1095 Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers

Authors: Alpha Agape Gopalai, Darwin Gouwanda, S.M.N. Arosha Senanayake

Abstract:

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1094 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1093 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image

Authors: Yohei Saika, Yuji Haraguchi

Abstract:

We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.

Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
1092 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1091 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System

Authors: Zainab Almukhtar, Adel Merabet

Abstract:

In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.

Keywords: Control system, power error, solar panel, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
1090 An Intelligent Human-Computer Interaction System for Decision Support

Authors: Chee Siong Teh, Chee Peng Lim

Abstract:

This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.

Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1089 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1088 The Experiences of South-African High-School Girls in a Fab Lab Environment

Authors: Nomusa Dlodlo, Ronald Noel Beyers

Abstract:

This paper reports on an effort to address the issue of inequality in girls- and women-s access to science, engineering and technology (SET) education and careers through raising awareness on SET among secondary school girls in South Africa. Girls participated in hands-on high-tech rapid prototyping environment of a fabrication laboratory that was aimed at stimulating creativity and innovation as part of a Fab Kids initiative. The Fab Kids intervention is about creating a SET pipeline as part of the Young Engineers and Scientists of Africa Initiative.The methodology was based on a real world situation and a hands-on approach. In the process, participants acquired a number of skills including computer-aided design, research skills, communication skills, teamwork skills, technical drawing skills, writing skills and problem-solving skills. Exposure to technology enhanced the girls- confidence in being able to handle technology-related tasks.

Keywords: Girls, design engineering, gender, science, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
1087 Ontology-based Concept Weighting for Text Documents

Authors: Hmway Hmway Tar, Thi Thi Soe Nyaunt

Abstract:

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Keywords: Clustering, Concept Weight, Document clustering, Feature Selection, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
1086 Thermal Regions for Unmanned Aircraft Systems Route Planning

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier. One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drag. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wings which can use thermals like birds and gliders. Thermal regions, which is area of 2000-3000 meter (1 NM), exist all around the world. It is natural and infinite source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: Airways, Thermals, UAS, UAS Roadmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1085 Hybrid Coding for Animated Polygonal Meshes

Authors: Jinghua Zhang, Charles B. Owen, Jinsheng Xu

Abstract:

A new hybrid coding method for compressing animated polygonal meshes is presented. This paper assumes the simplistic representation of the geometric data: a temporal sequence of polygonal meshes for each discrete frame of the animated sequence. The method utilizes a delta coding and an octree-based method. In this hybrid method, both the octree approach and the delta coding approach are applied to each single frame in the animation sequence in parallel. The approach that generates the smaller encoded file size is chosen to encode the current frame. Given the same quality requirement, the hybrid coding method can achieve much higher compression ratio than the octree-only method or the delta-only method. The hybrid approach can represent 3D animated sequences with higher compression factors while maintaining reasonable quality. It is easy to implement and have a low cost encoding process and a fast decoding process, which make it a better choice for real time application.

Keywords: animated polygonal meshes, compression, deltacoding, octree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1084 State Estimation Solution with Optimal Allocation of Phasor Measurement Units Considering Zero Injection Bus Modeling

Authors: M. Ravindra, R. Srinivasa Rao, V. Shanmukha Naga Raju

Abstract:

This paper presents state estimation with Phasor Measurement Unit (PMU) allocation to obtain complete observability of network. A matrix is designed with modeling of zero injection constraints to minimize PMU allocations. State estimation algorithm is developed with optimal allocation of PMUs to find accurate states of network. The incorporation of PMU into traditional state estimation process improves accuracy and computational performance for large power systems. The nonlinearity integrated with zero injection (ZI) constraints is remodeled to linear frame to optimize number of PMUs. The problem of optimal PMU allocation is regarded with modeling of ZI constraints, PMU loss or line outage, cost factor and redundant measurements. The proposed state estimation with optimal PMU allocation has been compared with traditional state estimation process to show its importance. MATLAB programming on IEEE 14, 30, 57, and 118 bus networks is implemented out by Binary Integer Programming (BIP) method and compared with other methods to show its effectiveness.

Keywords: Observability, phasor measurement units, synchrophasors, SCADA measurements, zero injection bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
1083 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
1082 A Context-Aware based Authorization System for Pervasive Grid Computing

Authors: Marilyn Lim Chien Hui, Nabil Elmarzouqi, Chan Huah Yong

Abstract:

This paper describes the authorization system architecture for Pervasive Grid environment. It discusses the characteristics of classical authorization system and requirements of the authorization system in pervasive grid environment as well. Based on our analysis of current systems and taking into account the main requirements of such pervasive environment, we propose new authorization system architecture as an extension of the existing grid authorization mechanisms. This architecture not only supports user attributes but also context attributes which act as a key concept for context-awareness thought. The architecture allows authorization of users dynamically when there are changes in the pervasive grid environment. For this, we opt for hybrid authorization method that integrates push and pull mechanisms to combine the existing grid authorization attributes with dynamic context assertions. We will investigate the proposed architecture using a real testing environment that includes heterogeneous pervasive grid infrastructures mapped over multiple virtual organizations. Various scenarios are described in the last section of the article to strengthen the proposed mechanism with different facilities for the authorization procedure.

Keywords: Pervasive Grid, Authorization System, Contextawareness, Ubiquity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1081 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.

Keywords: Education, methodological system, teaching of mathematics, teachers, lesson, students motivation, secondary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
1080 Detecting and Locating Wormhole Attacks in Wireless Sensor Networks Using Beacon Nodes

Authors: He Ronghui, Ma Guoqing, Wang Chunlei, Fang Lan

Abstract:

This paper focuses on wormhole attacks detection in wireless sensor networks. The wormhole attack is particularly challenging to deal with since the adversary does not need to compromise any nodes and can use laptops or other wireless devices to send the packets on a low latency channel. This paper introduces an easy and effective method to detect and locate the wormholes: Since beacon nodes are assumed to know their coordinates, the straight line distance between each pair of them can be calculated and then compared with the corresponding hop distance, which in this paper equals hop counts × node-s transmission range R. Dramatic difference may emerge because of an existing wormhole. Our detection mechanism is based on this. The approximate location of the wormhole can also be derived in further steps based on this information. To the best of our knowledge, our method is much easier than other wormhole detecting schemes which also use beacon nodes, and to those have special requirements on each nodes (e.g., GPS receivers or tightly synchronized clocks or directional antennas), ours is more economical. Simulation results show that the algorithm is successful in detecting and locating wormholes when the density of beacon nodes reaches 0.008 per m2.

Keywords: Beacon node, wireless sensor network, worm hole attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1079 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: Speech denoising, sparse representation, K-singular value decomposition, orthogonal matching pursuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
1078 Mitigation of Sag in Real Time

Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole

Abstract:

Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.

Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
1077 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.

Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
1076 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
1075 Fuzzy Logic Speed Controller for Direct Vector Control of Induction Motor

Authors: Ben Hamed M., Sbita L

Abstract:

This paper presents a new method for the implementation of a direct rotor flux control (DRFOC) of induction motor (IM) drives. It is based on the rotor flux components regulation. The d and q axis rotor flux components feed proportional integral (PI) controllers. The outputs of which are the target stator voltages (vdsref and vqsref). While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI like controller is commonly used. These controllers provide limited good performances over a wide range of operations even under ideal field oriented conditions. An alternate approach is to use the so called fuzzy logic controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP). Simulation and experimental results have been presented for a one kw IM drives to confirm the validity of the proposed algorithms.

Keywords: DRFOC, fuzzy logic, variable speed drives, control, IM and real time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1074 Proactive Detection of DDoS Attacks Utilizing k-NN Classifier in an Anti-DDos Framework

Authors: Hoai-Vu Nguyen, Yongsun Choi

Abstract:

Distributed denial-of-service (DDoS) attacks pose a serious threat to network security. There have been a lot of methodologies and tools devised to detect DDoS attacks and reduce the damage they cause. Still, most of the methods cannot simultaneously achieve (1) efficient detection with a small number of false alarms and (2) real-time transfer of packets. Here, we introduce a method for proactive detection of DDoS attacks, by classifying the network status, to be utilized in the detection stage of the proposed anti-DDoS framework. Initially, we analyse the DDoS architecture and obtain details of its phases. Then, we investigate the procedures of DDoS attacks and select variables based on these features. Finally, we apply the k-nearest neighbour (k-NN) method to classify the network status into each phase of DDoS attack. The simulation result showed that each phase of the attack scenario is classified well and we could detect DDoS attack in the early stage.

Keywords: distributed denial-of-service (DDoS), k-nearestneighbor classifier (k-NN), anti-DDoS framework, DDoS detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343
1073 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1072 Using Visual Technologies to Promote Excellence in Computer Science Education

Authors: Carol B. Collins, M. H. N Tabrizi

Abstract:

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors' and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors' experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

Keywords: Algorithms, CASE, UML, Problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616