Search results for: gene identification
760 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field
Authors: Nastaran Moosavi, Mohammad Mokhtari
Abstract:
Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.Keywords: Density, P-impedance, S-impedance, post-stack seismic inversion, pre-stack seismic inversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228759 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318758 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420757 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas
Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen
Abstract:
In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.
Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544756 Preparation a Study on the Use of the Resident Registration Number and Alternatives for RRN
Authors: Hyejin Pak, Changsoo Kim, Healahng Choi
Abstract:
The resident registration number was adopted for the purposes of enhanced services for resident convenience and effective performance of governmental administrative affairs. However, it has been used for identification purposes customarily and irrationally in line with the development and spread of the Internet. In response to the growing concern about the leakage of collected RRNs and possible abuses of stolen RRNs, e.g. identity theft, for crimes, the Korean Communications Commission began to take legal/regulatory actions in 2011 to minimize the online collection and use of resident registration numbers. As the use of the RRN was limited after the revision of the Act on Promotion of Information and Communications Network Utilization and Information Protection, etc., online business providers were required to have alternatives to the RRN for the purpose of identifying the user's identity and age, in compliance with the law, and settling disputes with customers. This paper presents means of verifying the personal identity by taking advantage of the commonly used infrastructure and simply replacing personal information entered and stored, without requiring users to enter their RRNs.
Keywords: Resident Registration Numbers(RRNs), Alternative identification for RRNs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909755 Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)
Authors: Jamalizadeh, M.R., Moghaddamnia, A., Piri, J., Arbabi, V., Homayounifar, M., Shahryari, A.
Abstract:
Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.Keywords: Dust Storm, Gamma Test, Prediction, ANNs, Zabol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152754 Automatic Vehicle Identification by Plate Recognition
Authors: Serkan Ozbay, Ergun Ercelebi
Abstract:
Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7586753 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification
Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui
Abstract:
The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.
Keywords: Distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855752 Information Security in E-Learning through Identification of Humans
Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour
Abstract:
During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649751 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.
Keywords: Adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894750 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484749 Identifying the Kinematic Parameters of Hexapod Machine Tool
Authors: M. M. Agheli, M. J. Nategh
Abstract:
Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367748 Security Enhanced RFID Middleware System
Authors: Jieun Song, Taesung Kim, Sokjoon Lee, Howon Kim
Abstract:
Recently, the RFID (Radio Frequency Identification) technology attracts the world market attention as essential technology for ubiquitous environment. The RFID market has focused on transponders and reader development. But that concern has shifted to RFID software like as high-valued e-business applications, RFID middleware and related development tools. However, due to the high sensitivity of data and service transaction within the RFID network, security consideration must be addressed. In order to guarantee trusted e-business based on RFID technology, we propose a security enhanced RFID middleware system. Our proposal is compliant with EPCglobal ALE (Application Level Events), which is standard interface for middleware and its clients. We show how to provide strengthened security and trust by protecting transported data between middleware and its client, and stored data in middleware. Moreover, we achieve the identification and service access control against illegal service abuse. Our system enables secure RFID middleware service and trusted e-business service.Keywords: RFID Middleware, ALE (Application Level Events), Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067747 Dynamic Time Warping in Gait Classificationof Motion Capture Data
Authors: Adam Świtoński, Agnieszka Michalczuk, Henryk Josiński, Andrzej Polański, KonradWojciechowski
Abstract:
The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.
Keywords: Biometrics, dynamic time warping, gait identification, motion capture, time series classification, quaternion distance functions, attribute ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611746 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842745 Evaluation of the Analytic for Hemodynamic Instability as A Prediction Tool for Early Identification of Patient Deterioration
Authors: Bryce Benson, Sooin Lee, Ashwin Belle
Abstract:
Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.
Keywords: Clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450744 Network Application Identification Based on Communication Characteristics of Application Messages
Authors: Yuji Waizumi, Yuya Tsukabe, Hiroshi Tsunoda, Yoshiaki Nemoto
Abstract:
A person-to-person information sharing is easily realized by P2P networks in which servers are not essential. Leakage of information, which are caused by malicious accesses for P2P networks, has become a new social issues. To prevent information leakage, it is necessary to detect and block traffics of P2P software. Since some P2P softwares can spoof port numbers, it is difficult to detect the traffics sent from P2P softwares by using port numbers. It is more difficult to devise effective countermeasures for detecting the software because their protocol are not public. In this paper, a discriminating method of network applications based on communication characteristics of application messages without port numbers is proposed. The proposed method is based on an assumption that there can be some rules about time intervals to transmit messages in application layer and the number of necessary packets to send one message. By extracting the rule from network traffic, the proposed method can discriminate applications without port numbers.Keywords: Network Application Identification, Message Transition Pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361743 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773742 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132741 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide- Dependent Protein Kinase-1 (PDK1) in Mice
Authors: S. M. M. Syairah, M. H. Rajikin, A-R. Sharaniza
Abstract:
Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3- kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morulas from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (27.32 + 0.23), G3 (25.42 + 0.21) and G4 (27.21 + 0.34) compared to control group (G1 – 14.61 + 0.25). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1. From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.Keywords: Embryonic development, morula, nicotine, vitamin E.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4823740 Identification of Regulatory Mechanism of Orthostatic Response
Authors: E. Hlavacova, J. Chrenova, Z. Rausova, M. Vlcek, A. Penesova, L. Dedik
Abstract:
En bloc assumes modeling all phases of the orthostatic test with the only one mathematical model, which allows the complex parametric view of orthostatic response. The work presents the implementation of a mathematical model for processing of the measurements of systolic, diastolic blood pressure and heart rate performed on volunteers during orthostatic test. The original assumption of model hypothesis that every postural change means only one Stressor, did not complying with the measurements of physiological circulation factor-time profiles. Results of the identification support the hypothesis that second postural change of orthostatic test causes induced Stressors, with the observation of a physiological regulation mechanism. Maximal demonstrations are on the heart rate and diastolic blood pressure-time profile, minimal are for the measurements of the systolic blood pressure. Presented study gives a new view on orthostatic test with impact on clinical practice.
Keywords: En bloc modeling, physiological circulatory factor, postural change, stressor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435739 Prioritization Assessment of Housing Development Risk Factors: A Fuzzy Hierarchical Process-Based Approach
Authors: Yusuf Garba Baba
Abstract:
The construction industry and housing subsector are fraught with risks that have the potential of negatively impacting on the achievement of project objectives. The success or otherwise of most construction projects depends to large extent on how well these risks have been managed. The recent paradigm shift by the subsector to use of formal risk management approach in contrast to hitherto developed rules of thumb means that risks must not only be identified but also properly assessed and responded to in a systematic manner. The study focused on identifying risks associated with housing development projects and prioritisation assessment of the identified risks in order to provide basis for informed decision. The study used a three-step identification framework: review of literature for similar projects, expert consultation and questionnaire based survey to identify potential risk factors. Delphi survey method was employed in carrying out the relative prioritization assessment of the risks factors using computer-based Analytical Hierarchical Process (AHP) software. The results show that 19 out of the 50 risks significantly impact on housing development projects. The study concludes that although significant numbers of risk factors have been identified as having relevance and impacting to housing construction projects, economic risk group and, in particular, ‘changes in demand for houses’ is prioritised by most developers as posing a threat to the achievement of their housing development objectives. Unless these risks are carefully managed, their effects will continue to impede success in these projects. The study recommends the adoption and use of the combination of multi-technique identification framework and AHP prioritization assessment methodology as a suitable model for the assessment of risks in housing development projects.
Keywords: Risk identification, risk assessment, analytical hierarchical process, multi-criteria decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734738 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835737 Classification of Discharges Initiated by Liquid Droplet on Insulation Material under AC Voltages Adopting UHF Technique
Authors: R. Sarathi, G. Nagesh, K. Vasudevan
Abstract:
In the present work, an attempt has been made to understand the feasibility of using UHF technique for identification of any corona discharges/ arcing in insulating material due to water droplets. The sensors of broadband type are useful for identification of such discharges. It is realised that arcing initiated by liquid droplet radiates UHF signals in the entire bandwidth up to 2 GHz. The frequency content of the UHF signal generated due to corona/arcing is not much varied in epoxy nanocomposites with different weight percentage of clay content. The exfoliated/intercalated properties were analysed through TEM studies. It is realized that corona initiated discharges are of intermittent process. The hydrophobicity of the material characterized through contact angle measurement. It is realized that low Wt % of nanoclay content in epoxy resin reduces the surface carbonization due to arcing/corona discharges. The results of the study with gamma irradiated specimen indicates that contact angle, discharge inception time and evaporation time of the liquid are much lower than the virgin epoxy nanocomposite material.Keywords: Arcing, Corona, epoxy resin, insulation, nanocomposites, UHF signal, water droplet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916736 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study
Authors: M. Ramadan, B. Salah
Abstract:
This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.Keywords: Lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109735 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging
Authors: Raimund Leitner, Susanne Rosskopf
Abstract:
Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545734 Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS
Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang
Abstract:
Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.Keywords: Environmental management system, environmental aspect, risk assessment, life cycle assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219733 A Semi-Fragile Signature based Scheme for Ownership Identification and Color Image Authentication
Authors: M. Hamad Hassan, S.A.M. Gilani
Abstract:
In this paper, a novel scheme is proposed for ownership identification and authentication using color images by deploying Cryptography and Digital Watermarking as underlaying technologies. The former is used to compute the contents based hash and the latter to embed the watermark. The host image that will claim to be the rightful owner is first transformed from RGB to YST color space exclusively designed for watermarking based applications. Geometrically YS ÔèÑ T and T channel corresponds to the chrominance component of color image, therefore suitable for embedding the watermark. The T channel is divided into 4×4 nonoverlapping blocks. The size of block is important for enhanced localization, security and low computation. Each block along with ownership information is then deployed by SHA160, a one way hash function to compute the content based hash, which is always unique and resistant against birthday attack instead of using MD5 that may raise the condition i.e. H(m)=H(m'). The watermark payload varies from block to block and computed by the variance factorα . The quality of watermarked images is quite high both subjectively and objectively. Our scheme is blind, computationally fast and exactly locates the tampered region.
Keywords: Hash Collision, LSB, MD5, PSNR, SHA160.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563732 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300731 Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique
Authors: Samir Avdakovic, Amir Nuhanovic
Abstract:
Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique.Keywords: Power system oscillations, Modal analysis, Prony, Wavelet, PMU, Wide Area Monitoring System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760