Search results for: Yan Shuang Zhang
36 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array
Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang
Abstract:
Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.
Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283635 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70634 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.
Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295133 Application of Griddization Management to Construction Hazard Management
Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu
Abstract:
Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.
Keywords: Construction hazard, grid management, griddization computing, process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157632 The Effect of Religious Tourist Motivation and Satisfaction on Behavioral Intention
Abstract:
In recent years, the Chaoshan area, a special place located in the southeast of Guangdong province in China, actively protects religious heritage and is developing religious tourism, which is attracting many expatriate Chinese who are coming back for travel and to worship. This paper discussed three questions. Firstly, what is the current situation about the different social background of tourists’ motivation, satisfaction and behavioral intention? Secondly, is there a relationship between the motivation, satisfaction and behavioral intention and the different social backgrounds of tourists? Thirdly, what is the relationship between religious tourists’ motivation, satisfaction and behavioral intention? The research methods use a combination of qualitative analysis and quantitative analysis. Qualitative analysis uses the method of observation and interviews. Convenient sampling technique was used for quantitative analysis. The study showed that the different social backgrounds of tourists’ forms diverse cognition and experiences about religious tourism, and their motivations, satisfaction and behavioral intention as tourists vary. Tourists’ motivation and satisfaction has a positive phase relation. Tourists’ motivation with satisfaction as the intervening variable also has a positive phase effect on tourists’ behavior intention. The result shows that religious tourists’ motivations include experiencing a religious atmosphere, and having a rest and recreation. The result also shows that religious tourists want to travel with their family members and friends. While traveling, religious tourists like to talk with Buddhist monks or nuns. Compared to other tourism types, religious tourists have higher expectations about temple environment, traveling experience, peripheral service and temple management.Keywords: Behavioral intension, motivation, religious tourism, satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202531 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network
Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley
Abstract:
A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152930 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships
Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang
Abstract:
In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.Keywords: Ice slurry, seawater pipe, ice packing fraction, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137829 Analysis of Maize Yield under Climate Change, Adaptations in Varieties and Planting Date in Northeast China in Recent Thirty Years
Authors: Zhan Fengmei Yao, Hui Li, Jiahua Zhang g
Abstract:
The Northeast China (NEC) was the most important agriculture areas and known as the Golden-Maize-Belt. Based on observed crop data and crop model, we design four simulating experiments and separate relative impacts and contribution under climate change, planting date shift, and varieties change as well change of varieties and planting date. Without planting date and varieties change, maize yields had no significant change trend at Hailun station located in the north of NEC, and presented significant decrease by 0.2 - 0.4 t/10a at two stations, which located in the middle and the south of NEC. With planting date change, yields showed a significant increase by 0.09 - 0.47 t/10a. With varieties change, maize yields had significant increase by 1.8~ 1.9 t/10a at Hailun and Huadian stations, but a non-significant and low increase by 0.2t /10a at Benxi located in the south of NEC. With change of varieties and planting date, yields presented a significant increasing by 0.53- 2.0 t/10a. Their contribution to yields was -25% ~ -55% for climate change, 15% ~ 35% for planting date change, and 20% ~110% for varieties change as well 30% ~135% for varieties with planting date shift. It found that change in varieties and planting date were highest yields and were responsible for significant increases in maize yields, varieties was secondly, and planting date was thirdly. It found that adaptation in varieties and planting date greatly improved maize yields, and increased yields annual variability. The increase of contribution with planting date and varieties change in 2000s was lower than in 1990s. Yields with the varieties change and yields with planting date and varieties change all showed a decreasing trend at Huadian and Benxi since 2002 or so. It indicated that maize yields increasing trend stagnated in the middle and south of NEC, and continued in the north of NEC.Keywords: Climate change, maize yields, varieties, planting date, impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216428 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89227 Corporate Social Responsibility Reporting, State Ownership, and Corporate Performance in China: Proof from Longitudinal Data of Publicly Traded Enterprises from 2006 to 2020
Authors: Wanda Luen-Wun Siu, Xiaowen Zhang
Abstract:
This paper offered the primary methodical proof on how Corporate Social Responsibility (CSR) reporting related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprises from 2006 to 2020 over two decades in the China Stock Market & Accounting Research database, we found initial evidence of significant direct relations between CSR reporting and firm corporate performance in both state-owned and privately-owned firms over this period, supporting the stakeholder theory. Results also revealed that state-owned enterprises performed as well as private enterprises in the current period. But private enterprises performed better than state-owned enterprises in the subsequent years. Moreover, the release of social responsibility reports had the more significant impact on the financial performance of state-owned and private enterprises in the current period than in the subsequent periods. Specifically, CSR release was not significantly associated to the financial performance of state-owned enterprises on the lag of the first, second, and third periods. But it had an impact on the lag of the first, second, and third periods among private enterprises. Such findings suggested that CSR reporting helped improve the corporate financial performance of state-owned and private enterprises in the current period, but this kind of effect was more significant among private enterprises in the lag periods.
Keywords: China’s Listed Firm, CSR reporting, financial performance, panel analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37426 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59325 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load
Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie
Abstract:
This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.
Keywords: Experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105524 Acceleration-Based Motion Model for Visual SLAM
Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.
Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24923 Safe, Effective, and Cost-Efficient Air Cleaning for Populated Rooms and Entire Buildings Based on the Disinfecting Power of Vaporized Hypochlorous Acid
Authors: D. Boecker, R. Breves, F. Herth, Z. Zhang, C. Bulitta
Abstract:
Pathogen-carrying aerosol particles are recognized as important infection carriers like those in the current Corona pandemic. This infection route is often underestimated yet represents the infection route that has been least systematically countered to date. Particularly, the transmission indoors is of the highest concern but current indoor safety measures (e.g.: distancing, masks, filters) provide only limited protection. Inhalation of hypochlorous acid (HOCl) containing aerosols may become an alternate route to attack the incubating microbes in-situ and so potentially lead to a reduction of symptoms of already infected individuals. We investigated a facility-wide air-disinfection concept utilizing the potential of vaporized HOCl to become a disinfecting agent for populated indoor atmospheres. Aerosolized bacterial microbes were used as surrogates for a viral contamination, particularly the enveloped coronavirus. For the room air purification tests we aerosolized bacterial suspensions into lab chambers preloaded with vaporized HOCl solutions. Concentration of ‘free active chlorine’ in the test chamber atmosphere was determined with a special gas sensor system (Draeger AG, Lübeck, Germany) controlling the amount of vaporized HOCl via an aerosolis® device (oji Europe GmbH, Nauen, Germany). We could confirm the disinfecting power of HOCl in suspensions and determined the high efficacy of vaporized HOCl to disinfect atmospheres of populated indoor places at safe and non-irritant levels.
Keywords: Hypochlorous acid, HOCl, indoor air cleaning, infection control, microbial air burden, protective atmosphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42622 Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196
Authors: Yanju Zhang, Joost M. Woltering, Fons J. Verbeek
Abstract:
It has been established that microRNAs (miRNAs) play an important role in gene expression by post-transcriptional regulation of messengerRNAs (mRNAs). However, the precise relationships between microRNAs and their target genes in sense of numbers, types and biological relevance remain largely unclear. Dissecting the miRNA-target relationships will render more insights for miRNA targets identification and validation therefore promote the understanding of miRNA function. In miRBase, miRanda is the key algorithm used for target prediction for Zebrafish. This algorithm is high-throughput but brings lots of false positives (noise). Since validation of a large scale of targets through laboratory experiments is very time consuming, several computational methods for miRNA targets validation should be developed. In this paper, we present an integrative method to investigate several aspects of the relationships between miRNAs and their targets with the final purpose of extracting high confident targets from miRanda predicted targets pool. This is achieved by using the techniques ranging from statistical tests to clustering and association rules. Our research focuses on Zebrafish. It was found that validated targets do not necessarily associate with the highest sequence matching. Besides, for some miRNA families, the frequency of their predicted targets is significantly higher in the genomic region nearby their own physical location. Finally, in a case study of dre-miR-10 and dre-miR-196, it was found that the predicted target genes hoxd13a, hoxd11a, hoxd10a and hoxc4a of dre-miR- 10 while hoxa9a, hoxc8a and hoxa13a of dre-miR-196 have similar characteristics as validated target genes and therefore represent high confidence target candidates.Keywords: MicroRNA targets validation, microRNA-target relationships, dre-miR-10, dre-miR-196.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199021 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube
Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang
Abstract:
Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.
Keywords: Vortex induced vibration, limit cycle, CFD, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146720 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau
Authors: Jiahua Zhang, Qing Chang, Fengmei Yao
Abstract:
Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.Keywords: Grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282719 Pro-inflammatory Phenotype of COPD Fibroblasts not Compatible with Repair in COPD Lung
Authors: Jing Zhang, Lian Wu, Jie-ming Qu, Chun-xue Bai, Mervyn J Merrilees, Peter N Black
Abstract:
COPD is characterized by loss of elastic fibers from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibers. We have examined fibroblasts cultured from lung tissue from normal and COPD subjects to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of bronchial carcinoma patients with varying degrees of COPD; controls (non-COPD, n=5), mild COPD (GOLD 1, n=5) and moderate-severe COPD (GOLD 2-3, n=12). Measurements were made of proliferation, senescence-associated beta-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE2, tropoelastin, insoluble elastin, and versican. It was found that GOLD 2-3 fibroblasts proliferated more slowly (p<0.01) and had higher levels of senescence-associated beta-galactosidase-1 (p<0.001) than controls (non-COPD). GOLD 2-3 fibroblasts showed significant increases in mRNA and/or protein for IL-6, IL-8, MMP-1, PGE2, versican (p<0.01) and tropoelastin (p<0.05). mRNA expression and/or protein levels of tropoelastin (p<0.01), versican (p<0.02), IL-6 (p<0.05) and IL-8 (p<0.05) were negatively correlated with FEV1%. Insoluble elastin was not increased. In summary, fibroblasts from moderate to severe COPD subjects display a secretory phenotype with up-regulation of inflammatory molecules including the matrix proteoglycan versican, and increased soluble, but not insoluble, elastin. Versican inhibits assembly of tropoelastin into insoluble elastin and we conclude that the pro-inflammatory phenotype of COPD fibroblasts it is not compatible with repair elastic fibers.Keywords: COPD, pulmonary fibroblasts, pro-inflammatory phenotype, versican, elastin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155418 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads
Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang
Abstract:
Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.
Keywords: Anti-dip slopes, crest loads, stability analysis, toppling failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90417 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63516 Director Compensation, CEO Duality, State Ownership, and Firm Performance in China: Proof from Panel Data of Publicly Listed Enterprises from 1999 to 2020
Authors: Wanda Luen-Wun Siu, Xiaowen Zhang
Abstract:
This paper offered the primary methodical proof on how director remuneration related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 1999 to 2020 over two decades in the China Stock Market & Accounting Research database, we found statistically significant positive associations between director pay and firm performance in privately owned firms over this period, supporting the agency theory. In contrast, among the state-owned enterprises, there was a reverse relation between director compensation and firm financial performance, contributing to the existing literature. But the results also revealed that state-owned enterprises financially performed as well as private enterprises. Such findings suggested that state ownership might line up officials’ career incentives with party prime concern rather than pecuniary incentives. Also, CEO duality enhanced firm performance. As such, allegiance to the party and possible advancement to an upper-level political position would motivate company directors in state-owned enterprises. On the other hand, directors in privately owned enterprises might be motivated by monetary incentives. In addition, a statistical regression model was proposed and tested to get the results of the performance of state-owned enterprises. Finally, some suggestions were made about how to improve the institutional management of government-owned corporations in China.
Keywords: China’s listed Firm, director compensation, CEO duality, firm performance, panel analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49715 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks
Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang
Abstract:
The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.Keywords: Femtocell networks, game theory, interference mitigation, spectrum allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73814 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76613 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions
Authors: S. Mogili, J. S. Kuang, N. Zhang
Abstract:
Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.
Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134112 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes
Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng
Abstract:
Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.
Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212511 A Robust Visual SLAM for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.
Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17810 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm
Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou
Abstract:
Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.
Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3999 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution
Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu
Abstract:
Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.
Keywords: Inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9008 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.
Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students
Authors: Liang Wang, Wei Zhang
Abstract:
Nowadays sustainable development has increasingly become an important research topic of engineering education all over the world. Engineering Education for Sustainable Development (EESD) highlighted the importance of addressing sustainable development in engineering practice. However, whether and how the professional engineering learning and experience affect those perceptions is an interesting research topic especially in Chinese context. Our study fills this gap by investigating perceptions bias of EESD among first-grade engineering students, fourth-grade engineering students and experienced engineers using a triple-dimensional model. Our goal is to find the effect of engineering learning and experience on sustainable development and make these learning and experiences more accessible for students and engineers in school and workplace context. The data (n = 138) came from a Likert questionnaire based on the triple-dimensional model of EESD adopted from literature reviews and the data contain 48 first-grade students, 56 fourth-grade students and 34 engineers with rich working experience from Environmental Engineering, Energy Engineering, Chemical Engineering and Civil Engineering in or graduated from Zhejiang University, China. One-way ANOVA analysis was used to find the difference in different dimensions among the three groups. The statistical results show that both engineering students and engineers have a well understanding of sustainable development in ecology dimension of EESD while there are significant differences among three groups as to the socio-economy and value rationality dimensions of EESD. The findings provide empirical evidence that both engineering learning and professional engineering experience are helpful to cultivate the cognition and perception of sustainable development in engineering education. The results of this work indicate that more practical content should be added to students’ engineering education while more theoretical content should be added to engineers’ training in order to promote the engineering students’ and engineers’ perceptions of sustainable development. In addition, as to the design of engineering courses and professional practice system for sustainable development, we should not only pay attention to the ecological aspects, but also emphasize the coordination of ecological, socio-economic and human-centered sustainable development (e.g., engineer's ethical responsibility).
Keywords: Engineering education, sustainable development, experienced engineers, engineering students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590