Search results for: Pose recognition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 925

Search results for: Pose recognition.

535 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
534 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
533 Augmented Reality Interaction System in 3D Environment

Authors: Sunhyoung Lee, Askar Akshabayev, Beisenbek Baisakov, Youngjoon Han, Hernsoo Hahn

Abstract:

It is important to give input information without other device in AR system. One solution is using hand for augmented reality application. Many researchers have proposed different solutions for hand interface in augmented reality. Analyze Histogram and connecting factor is can be example for that. Various Direction searching is one of robust way to recognition hand but it takes too much calculating time. And background should be distinguished with skin color. This paper proposes a hand tracking method to control the 3D object in augmented reality using depth device and skin color. Also in this work discussed relationship between several markers, which is based on relationship between camera and marker. One marker used for displaying virtual object and three markers for detecting hand gesture and manipulating the virtual object.

Keywords: Augmented Reality, depth map, hand recognition, kinect, marker, YCbCr color model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
532 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
531 Video Classification by Partitioned Frequency Spectra of Repeating Movements

Authors: Kahraman Ayyildiz, Stefan Conrad

Abstract:

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
530 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
529 A Comparative Study of Image Segmentation Algorithms

Authors: Mehdi Hosseinzadeh, Parisa Khoshvaght

Abstract:

In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available.

Keywords: Image Segmentation, hierarchical segmentation, partitional segmentation, density estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
528 Rough Set Based Intelligent Welding Quality Classification

Authors: L. Tao, T. J. Sun, Z. H. Li

Abstract:

The knowledge base of welding defect recognition is essentially incomplete. This characteristic determines that the recognition results do not reflect the actual situation. It also has a further influence on the classification of welding quality. This paper is concerned with the study of a rough set based method to reduce the influence and improve the classification accuracy. At first, a rough set model of welding quality intelligent classification has been built. Both condition and decision attributes have been specified. Later on, groups of the representative multiple compound defects have been chosen from the defect library and then classified correctly to form the decision table. Finally, the redundant information of the decision table has been reducted and the optimal decision rules have been reached. By this method, we are able to reclassify the misclassified defects to the right quality level. Compared with the ordinary ones, this method has higher accuracy and better robustness.

Keywords: intelligent decision, rough set, welding defects, welding quality level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
527 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis

Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos

Abstract:

The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.

Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
526 Multi-threshold Approach for License Plate Recognition System

Authors: Siti Norul Huda Sheikh Abdullah, Farshid Pirahan Siah, Nor Hanisah Haji Zainal Abidin, Shahnorbanun Sahran

Abstract:

The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.

Keywords: Multi-threshold approach, license plate recognition system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
525 Understanding Europe’s Role in the Area of Liberty, Security and Justice as an International Actor

Authors: Sarah Barrere

Abstract:

The area of liberty, security and justice within the European Union is still a work in progress. No one can deny that the EU struggles between a monistic and a dualist approach. The aim of our essay is to first review how the European law is perceived by the rest of the international scene. It will then discuss two main mechanisms at play: the interpretation of larger international treaties and the penal mechanisms of European law. Finally, it will help us understand the role of a penal Europe on the international scene with concrete examples. Special attention will be paid to cases that deal with fundamental rights as they represent an interesting case study in Europe and in the rest of the World. It could illustrate the aforementioned duality currently present in the Union’s interpretation of international public law. On the other hand, it will explore some specific European penal mechanism through mutual recognition and the European arrest warrant in the transnational criminality frame. Concerning the interpretation of the treaties, it will first, underline the ambiguity and the general nature of some treaties that leave the EU exposed to tension and misunderstanding then it will review the validity of an EU act (whether or not it is compatible with the rules of International law). Finally, it will focus on the most complete manifestation of liberty, security and justice through the principle of mutual recognition. Used initially in commercial matters, it has become “the cornerstone” of European construction. It will see how it is applied in judicial decisions (its main event and achieving success is via the European arrest warrant) and how European member states have managed to develop this cooperation.

Keywords: European penal law, International scene, Liberty security and justice area, mutual recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
524 Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

Authors: Marzuki Khalid, RubiyahYusof, AnisSalwaMohdKhairuddin

Abstract:

An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

Keywords: Tropical wood species, nonlinear data, featureextractors, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
523 Application of Tacit Knowledge from Professional Packaging Designer for Teaching Packaging Design

Authors: Somsri Binraman, Boonliang Kaewnapan, Krittika Tanprasert

Abstract:

In the package design industry, there are a lot of tacit knowledge resided within each designer. The objectives are to capture them and compile it to be used as a teaching resource and to create a video clip of package design process as well as to evaluate its quality and learning effectiveness. Interview were used as a technique for capturing knowledge in brand design concept, differentiation, recognition, rank of recognition factor, consumer survey, knowledge about marketing, research, graphic design, the effect of color, and law and regulation. Video clip about package design were created. The clip consisted of both the speech and clip of actual process. The quality of the video in term of media was ranked as good while the content was ranked as excellent. The students- score on post-test was significantly greater than that of pretest (p>0.001).

Keywords: Tacit knowledge, interview, video, packaging, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
522 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: Emotion identification, emotion models, gesture recognition, user perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
521 Development of a Pipeline Monitoring System by Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won

Abstract:

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
520 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
519 Investigation of Heavy Metals Uptake by Vegetable Crops from Metal-Contaminated Soil

Authors: Azita Behbahaninia, Seid Ahmad Mirbagheri

Abstract:

The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban areas of developing countries. The reuse of nutrients and organic matter in treated wastewater and sewage sludge via land application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. Long-term use of sewage sludge, heavy metals can accumulate to phytotoxic levels and results in reduced plants growth and/or enhanced metal concentrations in plants, which consumed by animals then enter the food chain. In this research, the amount of heavy metals was measured in plants irrigated with wastewater and sludge application. For this purpose, three pilots were made in a Shush treatment plant in south of Tehran. Three plants species, spinach, lettuce and radish were selected and planted in the pilots.First pilot was irrigated just with wastewater of treatment plant and second pilot was irrigated with wastewater and sludge application .Third pilot was irrigated with simulated heavy metals solution equal 50 years of irrigation. The results indicate that the average of amount of heavy metals Pb, Cd in three plant species in first pilot were lower than permissible limits .In second pilot, Cadmium accumulations are high in three species plants and more than the standard limits. Concentration of Cd , Pb have exceed their permitted limits in plants in third pilot . It was concluded that the use of wastewater and sludge application in agricultural lands enriched soils with heavy metals to concentrations that may pose potential environmental and health risks in the long-term.

Keywords: Soil, contaminate, heavy metals, wastewater, sludge, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
518 Learning Flexible Neural Networks for Pattern Recognition

Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh

Abstract:

Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.

Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
517 A New Biometric Human Identification Based On Fusion Fingerprints and Finger Veins Using monoLBP Descriptor

Authors: Alima Damak Masmoudi, Randa Boukhris Trabelsi, Dorra Sellami Masmoudi

Abstract:

Single biometric modality recognition is not able to meet the high performance supplies in most cases with its application become more and more broadly. Multimodal biometrics identification represents an emerging trend recently. This paper investigates a novel algorithm based on fusion of both fingerprint and fingervein biometrics. For both biometric recognition, we employ the Monogenic Local Binary Pattern (MonoLBP). This operator integrate the orginal LBP (Local Binary Pattern ) with both other rotation invariant measures: local phase and local surface type. Experimental results confirm that a weighted sum based proposed fusion achieves excellent identification performances opposite unimodal biometric systems. The AUC of proposed approach based on combining the two modalities has very close to unity (0.93).

Keywords: fingerprint, fingervein, LBP, MonoLBP, fusion, biometric trait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
516 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation

Authors: G.P. Nguyen, H.J. Andersen

Abstract:

Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.

Keywords: Sign localization, color-based segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
515 A Review in Advanced Digital Signal Processing Systems

Authors: Roza Dastres, Mohsen Soori

Abstract:

Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.

Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
514 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: Cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
513 Voice Features as the Diagnostic Marker of Autism

Authors: Elena Lyakso, Olga Frolova, Yuri Matveev

Abstract:

The aim of the study is to determine the acoustic features of voice and speech of children with autism spectrum disorders (ASD) as a possible additional diagnostic criterion. The participants in the study were 95 children with ASD aged 5-16 years, 150 typically development (TD) children, and 103 adults – listening to children’s speech samples. Three types of experimental methods for speech analysis were performed: spectrographic, perceptual by listeners, and automatic recognition. In the speech of children with ASD, the pitch values, pitch range, values of frequency and intensity of the third formant (emotional) leading to the “atypical” spectrogram of vowels are higher than corresponding parameters in the speech of TD children. High values of vowel articulation index (VAI) are specific for ASD children’s speech signals. These acoustic features can be considered as diagnostic marker of autism. The ability of humans and automatic recognition of the psychoneurological state of children via their speech is determined.

Keywords: Autism spectrum disorders, biomarker of autism, child speech, voice features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
512 Vision Based Hand Gesture Recognition

Authors: Pragati Garg, Naveen Aggarwal, Sanjeev Sofat

Abstract:

With the development of ubiquitous computing, current user interaction approaches with keyboard, mouse and pen are not sufficient. Due to the limitation of these devices the useable command set is also limited. Direct use of hands as an input device is an attractive method for providing natural Human Computer Interaction which has evolved from text-based interfaces through 2D graphical-based interfaces, multimedia-supported interfaces, to fully fledged multi-participant Virtual Environment (VE) systems. Imagine the human-computer interaction of the future: A 3Dapplication where you can move and rotate objects simply by moving and rotating your hand - all without touching any input device. In this paper a review of vision based hand gesture recognition is presented. The existing approaches are categorized into 3D model based approaches and appearance based approaches, highlighting their advantages and shortcomings and identifying the open issues.

Keywords: Computer Vision, Hand Gesture, Hand Posture, Human Computer Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6341
511 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
510 Medical Image Edge Detection Based on Neuro-Fuzzy Approach

Authors: J. Mehena, M. C. Adhikary

Abstract:

Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.

Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
509 Neural Network Based Speech to Text in Malay Language

Authors: H. F. A. Abdul Ghani, R. R. Porle

Abstract:

Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.  

Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
508 Human Facial Expression Recognition using MANFIS Model

Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar

Abstract:

Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.

Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
507 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Roselyn A. Maaño

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may results from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: Algorithms, Blind, Computer Vision, Embedded Systems, Image Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
506 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850