Search results for: Boundary value problem; Multipoint equation boundary value problems
6193 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy
Authors: Yongzhong Wu, Ping Ji
Abstract:
This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27486192 Genetic Algorithm for Solving Non-Convex Economic Dispatch Problem
Authors: Navid Javidtash, Abdolmohamad Davodi, Mojtaba Hakimzadeh, Abdolreza Roozbeh
Abstract:
Economic dispatch (ED) is considered to be one of the key functions in electric power system operation. This paper presents a new hybrid approach based genetic algorithm (GA) to economic dispatch problems. GA is most commonly used optimizing algorithm predicated on principal of natural evolution. Utilization of chaotic queue with GA generates several neighborhoods of near optimal solutions to keep solution variation. It could avoid the search process from becoming pre-mature. For the objective of chaotic queue generation, utilization of tent equation as opposed to logistic equation results in improvement of iterative speed. The results of the proposed approach were compared in terms of fuel cost, with existing differential evolution and other methods in literature.
Keywords: Economic Dispatch(ED), Optimization, Fuel Cost, Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23956191 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26246190 Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.Keywords: Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15066189 Computational Initial Value Method for Vibration Analysis of Symmetrically Laminated Composite Plate
Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy
Abstract:
In the present paper, an improved initial value numerical technique is presented to analyze the free vibration of symmetrically laminated rectangular plate. A combination of the initial value method (IV) and the finite differences (FD) devices is utilized to develop the present (IVFD) technique. The achieved technique is applied to the equation of motion of vibrating laminated rectangular plate under various types of boundary conditions. Three common types of laminated symmetrically cross-ply, orthotropic and isotropic plates are analyzed here. The convergence and accuracy of the presented Initial Value-Finite Differences (IVFD) technique have been examined. Also, the merits and validity of improved technique are satisfied via comparing the obtained results with those available in literature indicating good agreements.Keywords: Free Vibrations, Initial Value, Finite Differences, Laminated plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25316188 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.
Keywords: Heat transfer, Radiation effect, Shrinking sheet Unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19546187 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.
Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9116186 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem
Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota
Abstract:
Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.
Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23386185 Study about the Development of Small Towns in the Metropolitan Fringe in Developed Area of China–A Case Study of Sandun Town in Hangzhou
Authors: Haifeng Jiao, Chuankun Rao
Abstract:
Due to the Rapid Urbanization in China, the influence of metropolises to surrounding areas grows by a tremendous speed in developed region. One of the most obvious influences is the expansion of the urban built-up areas which covers the land belongs to small towns. Around metropolitan fringe, the boundary between city and village becomes more and more obscure. So being the most sensitive area, the small towns on the fringe of metropolises have the special meaning on the research into the small towns- development. This paper chooses Sandun Town in Hangzhou of Zhejiang Province as an example, emphatically focus on aspects such as the central area proliferation, the industrial shift, the position effect, the subway effect and the commercial development, reviews a few problems of small towns in the future and the important problems in their planning by the analysis of the characteristics of the present conditions and the developing motive mechanism, so that guides small towns to develop properly by liking with these small towns and center metropolises.
Keywords: Metropolitan fringe, Small towns, Sandun Town, Motive mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16206184 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section
Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli
Abstract:
In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23636183 Application of Functional Network to Solving Classification Problems
Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong
Abstract:
In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13106182 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads
Authors: T. H. Young, Y. J. Tsai
Abstract:
A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work. The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.
Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7666181 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3556180 Mathematical Models of Flow Shop and Job Shop Scheduling Problems
Authors: Miloš Šeda
Abstract:
In this paper, mathematical models for permutation flow shop scheduling and job shop scheduling problems are proposed. The first problem is based on a mixed integer programming model. As the problem is NP-complete, this model can only be used for smaller instances where an optimal solution can be computed. For large instances, another model is proposed which is suitable for solving the problem by stochastic heuristic methods. For the job shop scheduling problem, a mathematical model and its main representation schemes are presented.
Keywords: Flow shop, job shop, mixed integer model, representation scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46776179 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium
Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury
Abstract:
This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.
Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22766178 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.
Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6556177 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes
Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay
Abstract:
Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.
Keywords: Dynamic impact, deformable boundary conditions, finite element modeling, FEM, finite element, FE, LS-DYNA, Stainless steel pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7026176 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation
Authors: Tan K. B., Norhashidah Hj. M. Ali
Abstract:
In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.
Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16026175 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15886174 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem
Authors: W. Wongthatsanekorn, N. Matheekrieangkrai
Abstract:
This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.
Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29146173 Thermoelectric Properties of Doped Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.
Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316172 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA
Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval
Abstract:
Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32096171 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories
Authors: Ranajay Bhowmick
Abstract:
Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.
Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4376170 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22076169 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10916168 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas
Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth
Abstract:
For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.
Keywords: Emojis, problem ideas, innovation management, knowledge management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10816167 Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment
Authors: Gulshan Taj M. N. A., Anupam Chakrabarti, Vipul Prakash
Abstract:
In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.
Keywords: Functionally graded material, finite element method, higher order shear deformation theory, skew plate, thermal vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36136166 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7426165 Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method
Authors: S. Ul. Islam, H. Rahman, W. S. Abbasi, N. Rathore
Abstract:
In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.Keywords: Blockage ratio, Multi-relaxation-time lattice Boltzmann method, Square cylinder, Vortex formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20596164 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
Authors: Ziya Uddin
Abstract:
This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.
Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309