Search results for: Learning vector quantization neural network
1274 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4951273 Analysis of Event-related Response in Human Visual Cortex with fMRI
Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq
Abstract:
Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621272 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
Authors: Rajendra M Sonar
Abstract:
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20821271 XML based Safe and Scalable Multi-Agent Development Framework
Authors: Rinkaj Goyal, Pravin Chandra, Yogesh Singh
Abstract:
In this paper we describe our efforts to design and implement an agent development framework that has the potential to scale to the size of any underlying network suitable for various ECommerce activities. The main novelty in our framework is it-s capability to allow the development of sophisticated, secured agents which are simple enough to be practical. We have adopted FIPA agent platform reference Model as backbone for implementation along with XML for agent Communication and Java Cryptographic Extension and architecture to realize the security of communication information between agents. The advantage of our architecture is its support of agents development in different languages and Communicating with each other using a more open standard i.e. XMLKeywords: Agent, Agent Development Framework, Agent Coordination, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241270 Collaborative and Experimental Cultures in Virtual Reality Journalism: From the Perspective of Content Creators
Authors: Radwa Mabrook
Abstract:
Virtual Reality (VR) content creation is a complex and an expensive process, which requires multi-disciplinary teams of content creators. Grant schemes from technology companies help media organisations to explore the VR potential in journalism and factual storytelling. Media organisations try to do as much as they can in-house, but they may outsource due to time constraints and skill availability. Journalists, game developers, sound designers and creative artists work together and bring in new cultures of work. This study explores the collaborative experimental nature of VR content creation, through tracing every actor involved in the process and examining their perceptions of the VR work. The study builds on Actor Network Theory (ANT), which decomposes phenomena into their basic elements and traces the interrelations among them. Therefore, the researcher conducted 22 semi-structured interviews with VR content creators between November 2017 and April 2018. Purposive and snowball sampling techniques allowed the researcher to recruit fact-based VR content creators from production studios and media organisations, as well as freelancers. Interviews lasted up to three hours, and they were a mix of Skype calls and in-person interviews. Participants consented for their interviews to be recorded, and for their names to be revealed in the study. The researcher coded interviews’ transcripts in Nvivo software, looking for key themes that correspond with the research questions. The study revealed that VR content creators must be adaptive to change, open to learn and comfortable with mistakes. The VR content creation process is very iterative because VR has no established work flow or visual grammar. Multi-disciplinary VR team members often speak different languages making it hard to communicate. However, adaptive content creators perceive VR work as a fun experience and an opportunity to learn. The traditional sense of competition and the strive for information exclusivity are now replaced by a strong drive for knowledge sharing. VR content creators are open to share their methods of work and their experiences. They target to build a collaborative network that aims to harness VR technology for journalism and factual storytelling. Indeed, VR is instilling collaborative and experimental cultures in journalism.
Keywords: Collaborative culture, content creation, experimental culture, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7961269 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36771268 Bitrate Reduction Using FMO for Video Streaming over Packet Networks
Authors: Le Thanh Ha, Hye-Soo Kim, Chun-Su Park, Seung-Won Jung, Sung-Jea Ko
Abstract:
Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.Keywords: Data Partition, Entropy Coding, Greedy Algorithm, H.264/AVC, Slice Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131267 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.
Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8611266 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets
Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi
Abstract:
In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.
Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20711265 Instructional Design and Development Utilizing Technology: A Student Perspective
Authors: Lisa M. Weltzer-Ward, Abbie Brown
Abstract:
The sequence Analyze, Design, Develop, Implement, and Evaluate (ADDIE) provides a powerful methodology for designing computer-based educational materials. Helping students to understand this design process sequence may be achieved by providing them with direct, guided experience. This article examines such help and guidance and the overall learning process from a student-s personal experience.
Keywords: ADDIE, education, instructional design, web design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721264 Applying Transformative Service Design to Develop Brand Community Service in Women, Children and Infants Retailing
Authors: Shian Wan, Yi-Chang Wang, Yu-Chien Lin
Abstract:
This research discussed the various theories of service design, the importance of service design methodology, and the development of transformative service design framework. In this study, transformative service design is applied while building a new brand community service for women, children and infants retailing business. The goal is to enhance the brand recognition and customer loyalty, effectively increase the brand community engagement by embedding the brand community in social network and ultimately, strengthen the impact and the value of the company brand.Keywords: Service design, transformative service design, brand community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13001263 Power Minimization in Decode-and-XOR-Forward Two-Way Relay Networks
Authors: Dong-Woo Lim, Chang-Jae Chun, Hyung-Myung Kim
Abstract:
We consider a two-way relay network where two sources exchange information. A relay helps the two sources exchange information using the decode-and-XOR-forward protocol. We investigate the power minimization problem with minimum rate constraints. The system needs two time slots and in each time slot the required rate pair should be achievable. The power consumption is minimized in each time slot and we obtained the closed form solution. The simulation results confirm that the proposed power allocation scheme consumes lower total power than the conventional schemes.
Keywords: Decode-and-XOR-forward, power minimization, two-way relay
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921262 Optimal Synthesis of Multipass Heat Exchanger without Resorting to Correction Factor
Authors: Bharat B. Gulyani, Anuj Jain, Shalendra Kumar
Abstract:
Customarily, the LMTD correction factor, FT, is used to screen alternative designs for a heat exchanger. Designs with unacceptably low FT values are discarded. In this paper, authors have proposed a more fundamental criterion, based on feasibility of a multipass exchanger as the only criteria, followed by economic optimization. This criterion, coupled with asymptotic energy targets, provide the complete optimization space in a heat exchanger network (HEN), where cost-optimization of HEN can be performed with only Heat Recovery Approach temperature (HRAT) and number-of-shells as variables.Keywords: heat exchanger, heat exchanger networks, LMTD correction factor, shell targeting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43281261 DYVELOP Method Implementation for the Research Development in Small and Middle Enterprises
Authors: Jiří F. Urbánek, David Král
Abstract:
Small and Middle Enterprises (SME) have a specific mission, characteristics, and behavior in global business competitive environments. They must respect policy, rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. Paper aims and purposes are to introduce computational assistance, which enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It is providing for SMS´s global environment the capability and profit to achieve its commitment regarding the effectiveness of the quality management system in customer requirements meeting and also the continual improvement of the organization’s and SME´s processes overall performance and efficiency, as well as its societal security via continual planning improvement. DYVELOP model´s maps - the Blazons are able mathematically - graphically express the relationships among entities, actors, and processes, including the discovering and modeling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission – added value analysis. The crisis management of SMEs is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process is a good indicator and controlling actor of SME continuity and its sustainable development advanced possibilities.Keywords: Blazons, computational assistance, DYVELOP method, small and middle enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7041260 Cryptanalysis of Chang-Chang-s EC-PAKA Protocol for Wireless Mobile Networks
Authors: Hae-Soon Ahn, Eun-Jun Yoon
Abstract:
With the rapid development of wireless mobile communication, applications for mobile devices must focus on network security. In 2008, Chang-Chang proposed security improvements on the Lu et al.-s elliptic curve authentication key agreement protocol for wireless mobile networks. However, this paper shows that Chang- Chang-s improved protocol is still vulnerable to off-line password guessing attacks unlike their claims.
Keywords: Authentication, key agreement, wireless mobile networks, elliptic curve, password guessing attacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15171259 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet
Abstract:
In this paper, we propose a new packing strategy to find a free resource for run-time mapping of application tasks to NoC-based Heterogeneous MPSoC. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out for a platform containing single task supported PEs. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.
Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), Heterogeneous architectures, Dynamic mapping heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611258 A Systematic Approach for Finding Hamiltonian Cycles with a Prescribed Edge in Crossed Cubes
Authors: Jheng-Cheng Chen, Chia-Jui Lai, Chang-Hsiung Tsai,
Abstract:
The crossed cube is one of the most notable variations of hypercube, but some properties of the former are superior to those of the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. In this paper, we focus on the problem embedding a Hamiltonian cycle through an arbitrary given edge in the crossed cube. We give necessary and sufficient condition for determining whether a given permutation with n elements over Zn generates a Hamiltonian cycle pattern of the crossed cube. Moreover, we obtain a lower bound for the number of different Hamiltonian cycles passing through a given edge in an n-dimensional crossed cube. Our work extends some recently obtained results.
Keywords: Interconnection network, Hamiltonian, crossed cubes, prescribed edge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311257 The Importance of Raising Awareness of Collocational Knowledge in ESL/EFL Classrooms
Authors: Mohammad ALAmro
Abstract:
The most crucial aspect that is closely related to vocabulary and the one that needs to be emphasized and investigated more than it has been up until now, is the ability to combine words that co-occur frequently in the language. Pedagogically, collocation is one of the error-provoking aspects in foreign language learning. This is indicative of the dire need to provide L2 learners with tools to help them improve their collocational knowledge. This paper pinpoints the role that collocations play in the English language. Furthermore, it presents pedagogical implications for ESL/EFL learners.
Keywords: Collocation, pedagogy, vocabulary knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22131256 3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images
Authors: K. Aloui, M. S. Naceur
Abstract:
The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.
Keywords: Medical imaging, level-sets, compression, meshess implification, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441255 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621254 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field
Authors: Chee Teck Phua, Gaëlle Lissorgues
Abstract:
Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.
Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26191253 ICCFMS – Set Up Candid Clips Effectiveness
Authors: P. Suparada, D. Eakapotch
Abstract:
The objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire and in-depth interview from experts. The findings showed the advantages and disadvantages of communication for publicizing and advertising via new media in the form of set up candid clip including with the specific target group for this kind of advertising. It will be useful for fields of publicizing and advertising in the new media forms at the present.
Keywords: Candid Clip, Communication, New Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851252 Access Policy Specification for SCADA Networks
Authors: Rodrigo Chandia, Mauricio Papa
Abstract:
Efforts to secure supervisory control and data acquisition (SCADA) systems must be supported under the guidance of sound security policies and mechanisms to enforce them. Critical elements of the policy must be systematically translated into a format that can be used by policy enforcement components. Ideally, the goal is to ensure that the enforced policy is a close reflection of the specified policy. However, security controls commonly used to enforce policies in the IT environment were not designed to satisfy the specific needs of the SCADA environment. This paper presents a language, based on the well-known XACML framework, for the expression of authorization policies for SCADA systems.Keywords: Access policy specification, process control systems, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23241251 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561250 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: Clustering, multi-path, routing protocol, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771249 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4651248 Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network
Authors: Jyothi Digge, B. U. Rindhe, S. K. Narayankhedkar
Abstract:
A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.Keywords: Dispersion, MMI Coupler, Photonic Bandgap, Power Splitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151247 An Semantic Algorithm for Text Categoritation
Authors: Xu Zhao
Abstract:
Text categorization techniques are widely used to many Information Retrieval (IR) applications. In this paper, we proposed a simple but efficient method that can automatically find the relationship between any pair of terms and documents, also an indexing matrix is established for text categorization. We call this method Indexing Matrix Categorization Machine (IMCM). Several experiments are conducted to show the efficiency and robust of our algorithm.
Keywords: Text categorization, Sub-space learning, Latent Semantic Space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731246 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.
Keywords: FT-NIR, Pasta, moisture determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28281245 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.
Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206