Search results for: Social Learning Theory.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4749

Search results for: Social Learning Theory.

789 The State-of-Art Environmental Impact Assessment: An Overview

Authors: Tsolmon Tumenjargal, Muhammad Hassan Khalil, Wu Yao Guo

Abstract:

The research on the effectiveness of environmental assessment (EA) is a milestone effort to evaluate the state of the field, including many contributors related with a lot of countries since more than two decades. In the 1960s, there was a surge of interest between modern industrialized countries over unexpected opposite effects of technical invention. The interest led to choice of approaches for assessing and prediction the impressions of technology and advancement for social and economic, state health and safety, solidity and the circumstances. These are consisting of risk assessment, technology assessment, environmental impact assessment and costbenefit analysis. In this research contribution, the authors have described the research status for environmental assessment in cumulative environmental system. This article discusses the methods for cumulative effect assessment (CEA).

Keywords: Cumulative effect assessment, Environmental impact assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
788 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780
787 Issue Reorganization Using the Measure of Relevance

Authors: William Wong Xiu Shun, Yoonjin Hyun, Mingyu Kim, Seongi Choi, Namgyu Kim

Abstract:

The need to extract R&D keywords from issues and use them to retrieve R&D information is increasing rapidly. However, it is difficult to identify related issues or distinguish them. Although the similarity between issues cannot be identified, with an R&D lexicon, issues that always share the same R&D keywords can be determined. In detail, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Furthermore, the relationship among issues that share the same R&D keywords can be shown in a more systematic way by clustering them according to keywords. Thus, sharing R&D results and reusing R&D technology can be facilitated. Indirectly, redundant investment in R&D can be reduced as the relevant R&D information can be shared among corresponding issues and the reusability of related R&D can be improved. Therefore, a methodology to cluster issues from the perspective of common R&D keywords is proposed to satisfy these demands.

Keywords: Clustering, Social Network Analysis, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
786 Traditions of Theatrical Art in the Space of Nomadic Culture of the Kazakhs

Authors: Yeskendirov N.R., Karjaubaeva S.K., Ahmet A. K.

Abstract:

A number of theoretical and methodological problems connected with substantiation of a new approach and searches of a new research paradigm and the analysis of features of formation and development of the Kazakh stage are considered in the article. The wide spectrum of questions connected with genesis of the Kazakh stage art has caused necessity of consideration of world outlook and social cultural aspects which have affected formation of the given phenomenon in the Kazakh culture. But how can we define the form of expression and aesthetics of the national theatre? Probably, the answer to this question we will find if we apply to deep world view sources, and, as a consequence, it is necessary to study deeply the plot dramaturgy, which is based on myths, rites and eposes, mastering of symbolic gestures and mimics, allegory of a word, etc.

Keywords: Tradition, theater, art, culture, nomadic Kazakhs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
785 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.

Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
784 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
783 An Empirical Study of the Expectation- Perception Gap of I.S. Development

Authors: Linda, Sau-ling Lai

Abstract:

This paper adopts a notion of expectation-perception gap of systems users as information systems (IS) failure. Problems leading to the expectation-perception gap are identified and modelled as five interrelated discrepancies or gaps throughout the process of information systems development (ISD). It describes an empirical study on how systems developers and users perceive the size of each gap and the extent to which each problematic issue contributes to the gap. The key to achieving success in ISD is to keep the expectationperception gap closed by closing all 5 pertaining gaps. The gap model suggests that most factors in IS failure are related to organizational, cognitive and social aspects of information systems design. Organization requirement analysis, being the weakest link of IS development, is particularly worthy of investigation.

Keywords: Information Systems Development, Expectation- Perception Gap, Gap Analysis, Organization Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
782 Strategy Analysis and Creation by Simulation in the General Game

Authors: Gábor Szűcs, Gábor Neszveda, Xin Fang

Abstract:

In this paper the General Game problem is described. In this problem the competition or cooperation dilemma occurs as the two basic types of strategies. The strategy possibilities have been analyzed for finding winning strategy in uncertain situations (no information about the number of players and their strategy types). The winning strategy is missing, but a good solution can be found by simulation by varying the ratio of the two types of strategies. This new method has been used in a real contest with human players, where the created strategies by simulation have reached very good ranks. This construction can be applied in other real social games as well.

Keywords: competition, cooperation, finding good strategy, General Game

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
781 Innovative Teaching in Systems Analysis and Design - an Action Research Project

Authors: Imelda Smit

Abstract:

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Keywords: Action Research, Project Development, Systems Analysis and Design, Technology in Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
780 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
779 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
778 Inequalities in Higher Education and Students’ Perceptions of Factors Influencing Academic Performance

Authors: Violetta Parutis

Abstract:

This qualitative study aims to answer the following research questions: i) What are the factors that students perceive as relevant to a) promoting and b) preventing good grades? ii) How does socio-economic status (SES) feature in those beliefs? We conducted in-depth interviews with 19 first- and second-year undergraduates of varying SES at a research-intensive university in the UK. The interviews yielded eight factors that students perceived as promoting and six perceived as preventing good grades. The findings suggested one significant difference between the beliefs of low and high SES students in that low SES students perceive themselves to be at a greater disadvantage to their peers while high SES students do not have such beliefs. This could have knock-on effects on their performance.

Keywords: Social class, education, academic performance, students’ beliefs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
777 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
776 Complex Network Approach to International Trade of Fossil Fuel

Authors: Semanur Soyyiğit Kaya, Ercan Eren

Abstract:

Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.

Keywords: Complex network approach, fossil fuel, international trade, network theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
775 Bioclimatic Principles and Urban Open Spaces: The Case of Xanthi

Authors: Maria Giannopoulou

Abstract:

Open urban public spaces comprise an important element for the development of social, cultural and economic activities of the population in the modern cities. These spaces are also considered regulators of the region-s climate conditions, providing better thermal, visual and auditory conditions which can be optimized by the application of appropriate strategies of bioclimatic design. The paper focuses on the analysis and evaluation of the recent unification of the open spaces in the centre of Xanthi, a medium – size city in northern Greece, from a bioclimatic perspective, as well as in the creation of suitable methodology. It is based both on qualitative observation of the interventions by fieldwork research and assessment and on quantitative analysis and modeling of the research area.

Keywords: Bioclimatic principles, Quantitative analysis, Sustainability, TownScope III, Urban open spaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
774 Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity

Authors: Maribel G. Guzmán, Jean Dille, Stephan Godet

Abstract:

Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├¡cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV–Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV–Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├¡culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.

Keywords: Silver nanoparticles, surface plasmon, UV-Vis absorption spectrum, chemicals reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13106
773 Botswana and Nation-Building Theory

Authors: Rowland M. Brucken

Abstract:

This paper argues nation-building theories that prioritize democratic governance best explain the successful postindependence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

Keywords: Botswana, democratization, economic development, nation-building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437
772 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
771 Sustainability Strategy and Firm Performance in Residential Trade and Industry: A Conceptual Analysis

Authors: Martin Macion

Abstract:

The request for a sustainable development challenges both managers and consumers to rethink habitual practices and activities. While consumers are challenged to develop sustainable consumption patterns, companies are asked to establish managerial systems and structures considering economical, ecological, and social issues. As this is in particular true for housing associations, this paper aims first, at providing an understanding of sustainability strategy in residential trade and industry (RTI) by identifying relevant facets of this construct and second, at conceptually analyzing the impact of sustainability strategy in RTI on operational efficiency and performance of municipal housing companies. The author develops a model of sustainability strategy in RTI and its effects and further, sheds light in priorities for future research.

Keywords: firm performance, sustainability strategy, residentialtrade and industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
770 Redefining Field Experiences: Virtual Environments in Teacher Education

Authors: Laurie Mullen, Jayne Beilke, Nancy Brooks

Abstract:

The explosion of interest in online gaming and virtual worlds is leading many universities to investigate possible educational applications of the new environments. In this paper we explore the possibilities of 3D online worlds for teacher education, particularly the field experience component. Drawing upon two pedagogical examples, we suggest that virtual simulations may, with certain limitations, create safe spaces that allow preservice teachers to adopt alternate identities and interact safely with the “other." In so doing they may become aware of the constructed nature of social categories and gain the essential pedagogical skill of perspective-taking. We suggest that, ultimately, the ability to be the principal creators of themselves in virtual environments can increase their ability to do the same in the real world.

Keywords: field experience, pedagogy, simulation, teacher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
769 Kazakhstani Humanism: Challenges and Prospects

Authors: Samat Turganbekov, Zhakan Mol

Abstract:

This article examines the emergence and development of the Kazakhstan species of humanism. The biggest challenge for Kazakhstan in terms of humanism is connected with advocating human values in parallel to promoting national interests; preserving the continuity of traditions in various spheres of life, business and culture. This should be a common goal for the entire society, the main direction for a national intelligence, and a platform for the state policy. An idea worth considering is a formation of national humanist tradition model; the challenges are adapting people to live in the context of new industrial and innovative economic conditions, keeping the balance during intensive economic development of the country, and ensuring social harmony in the society.

Keywords: Kazakh humanism, humanist tradition, national culture, spiritual and moral priority, national interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
768 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
767 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
766 Sentiment Analysis: Popularity of Candidates for the President of the United States

Authors: Radek Malinský, Ivan Jelínek

Abstract:

This article deals with the popularity of candidates for the president of the United States of America. The popularity is assessed according to public comments on the Web 2.0. Social networking, blogging and online forums (collectively Web 2.0) are for common Internet users the easiest way to share their personal opinions, thoughts, and ideas with the entire world. However, the web content diversity, variety of technologies and website structure differences, all of these make the Web 2.0 a network of heterogeneous data, where things are difficult to find for common users. The introductory part of the article describes methodology for gathering and processing data from Web 2.0. The next part of the article is focused on the evaluation and content analysis of obtained information, which write about presidential candidates.

Keywords: Sentiment Analysis, Web 2.0, Webometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
765 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
764 From “Boat to Plate”: Creating Value through Sustainable Fish Supply Chain Visibility

Authors: Isabel Duarte de Almeida, João Vilas-Boas, Luís Miguel Ferreira

Abstract:

Environmental concerns about the scarcity of marine resources are critical driving forces for firms aiming to prepare their supply chains for sustainability. Building on previous work, this paper highlights the implementation of good practices geared towards sustainable operations in the seafood department, which were pursued in an exploratory retailer case. Outcomes of the adopted environmentally and socially acceptable fish retailing strategies, ranged from traceability, to self-certification and eco-labelling. The consequences for business were, as follows: stronger collaboration and trust across the chain of custody, improvement of sponsors’ image and of consumers’ loyalty and, progress in the Greenpeace retailers’ evaluation ranking.

Keywords: Sustainability in sea food, Supply Chain Traceability, Social Responsibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
763 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
762 The Portuguese Press Portrait of “Environmental Refugees“

Authors: Inês Vieira

Abstract:

The migration-environment nexus has gained increased interest from the social research field over the last years. While straightly connected to human security issues, this theme has pervaded through the media to the public sphere. Therefore, it is important to observe how did the discussions over environmentally induced migrations develop from the scientific basis to the media attention, passing through some political voices, and in which ways might these messages be interpreted within the broader public discourses. To achieve this purpose, the analysis of the press entries between 2004 and 2010 in three of the main Portuguese newspapers shall be presented, specially reflecting upon the events, protagonists, topics, geographical attributions and terms/expressions used to define those who migrate due to environmental degradation or disasters.

Keywords: Climate refugees, environmental refugees, environmentally induced migrations, Portuguese written press

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
761 Exploring Perceptions and Practices About Information and Communication Technologies in Business English Teaching in Pakistan

Authors: M. Athar Hussain, N.B. Jumani, Munazza Sultana., M. Zafar Iqbal

Abstract:

Language Reforms and potential use of ICTs has been a focal area of Higher Education Commission of Pakistan. Efforts are being accelerated to incorporate fast expanding ICTs to bring qualitative improvement in language instruction in higher education. This paper explores how university teachers are benefitting from ICTs to make their English class effective and what type of problems they face in practicing ICTs during their lectures. An in-depth qualitative study was employed to understand why language teachers tend to use ICTs in their instruction and how they are practicing it. A sample of twenty teachers from five universities located in Islamabad, three from public sector and two from private sector, was selected on non-random (Snowball) sampling basis. An interview with 15 semi-structured items was used as research instruments to collect data. The findings reveal that business English teaching is facilitated and improved through the use of ICTs. The language teachers need special training regarding the practices and implementation of ICTs. It is recommended that initiatives might be taken to equip university language teachers with modern methodology incorporating ICTs as focal area and efforts might be made to remove barriers regarding the training of language teachers and proper usage of ICTs.

Keywords: Information and communication technologies, internet assisted learning, teaching business English, online instructional content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
760 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)

Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,

Abstract:

One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.

Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021