Search results for: coherence methods
126 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014125 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.
Keywords: Biostimulants, control methods, Phelipanche ramosa, processing tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908124 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.
Keywords: Benchmark collection, program educational objectives, student outcomes, ABET, Accreditation, machine learning, supervised multiclass classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843123 Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model
Authors: Selvam M, Natarajan. A M, Thangarajan R
Abstract:
Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model.Keywords: Hybrid Language Model, Immediate Head Parsing, Lexicalized and Statistical Parsing, Natural Language Processing, Parts of Speech, Probabilistic Context Free Grammar, Tamil Language, Tree Bank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3650122 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3
Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris
Abstract:
Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.
Keywords: Fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379121 Tools and Techniques in Risk Assessment in Public Risk Management Organisations
Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop
Abstract:
Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.
Keywords: Decision-making, public risk management organisations, risk assessment, tools and techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653120 The Characteristics of Static Plantar Loading in the First-Division College Sprint Athletes
Authors: Tong-Hsien Chow
Abstract:
Background: Plantar pressure measurement is an effective method for assessing plantar loading and can be applied to evaluating movement performance of the foot. The purpose of this study is to explore the sprint athletes’ plantar loading characteristics and pain profiles in static standing. Methods: Experiments were undertaken on 80 first-division college sprint athletes and 85 healthy non-sprinters. ‘JC Mat’, the optical plantar pressure measurement was applied to examining the differences between both groups in the arch index (AI), three regional and six distinct sub-regional plantar pressure distributions (PPD), and footprint characteristics. Pain assessment and self-reported health status in sprint athletes were examined for evaluating their common pain areas. Results: Findings from the control group, the males’ AI fell into the normal range. Yet, the females’ AI was classified as the high-arch type. AI values of the sprint group were found to be significantly lower than the control group. PPD were higher at the medial metatarsal bone of both feet and the lateral heel of the right foot in the sprint group, the males in particular, whereas lower at the medial and lateral longitudinal arches of both feet. Footprint characteristics tended to support the results of the AI and PPD, and this reflected the corresponding pressure profiles. For the sprint athletes, the lateral knee joint and biceps femoris were the most common musculoskeletal pains. Conclusions: The sprint athletes’ AI were generally classified as high arches, and that their PPD were categorized between the features of runners and high-arched runners. These findings also correspond to the profiles of patellofemoral pain syndrome (PFPS)-related plantar pressure. The pain profiles appeared to correspond to the symptoms of high-arched runners and PFPS. The findings reflected upon the possible link between high arches and PFPS. The correlation between high-arched runners and PFPS development is worth further studies.Keywords: Sprint athletes, arch index, plantar pressure distributions, high arches, patellofemoral pain syndrome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838119 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients
Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi
Abstract:
Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.
Keywords: Frailty model, latent variables, liver cirrhosis, parametric distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065118 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165117 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform
Authors: Stamatios A. Theocharis, George A. Tsihrintzis
Abstract:
One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.
To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.
Keywords: e-Government, civil employees education, education technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944116 Reflective Thinking and Experiential Learning: A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities and Greater Integration of Student Profiles
Authors: P. Bogas
Abstract:
As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences resulted from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the students' response can be described as: students who reinforce the initial deep approach, students who maintain the initial deep approach level and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to a possible adoption of deep approaches to learning, since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding to the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself and, on the other hand, the additional effort that this practice required for some of the students.
Keywords: Experiential learning, higher education, marketing, mixed methods, reflective thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317115 Expert Witness Testimony in the Battered Woman Syndrome
Authors: Ana Pauna
Abstract:
The Expert Witness Testimony in the Battered Woman Syndrome Expert witness testimony (EWT) is a kind of information given by an expert specialized in the field (here in BWS) to the jury in order to help the court better understand the case. EWT does not always work in favor of the battered women. Two main decision-making models are discussed in the paper: the Mathematical model and the Explanation model. In the first model, the jurors calculate ″the importance and strength of each piece of evidence″ whereas in the second model they try to integrate the EWT with the evidence and create a coherent story that would describe the crime. The jury often misunderstands and misjudges battered women for their action (or in this case inaction). They assume that these women are masochists and accept being mistreated for if a man abuses a woman constantly, she should and could divorce him or simply leave at any time. The research in the domain found that indeed, expert witness testimony has a powerful influence on juror’s decisions thus its quality needs to be further explored. One of the important factors that need further studies is a bias called the dispositionist worldview (a belief that what happens to people is of their own doing). This kind of attributional bias represents a tendency to think that a person’s behavior is due to his or her disposition, even when the behavior is clearly attributed to the situation. Hypothesis The hypothesis of this paper is that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. The juror would therefore commit the fundamental attribution error and believe that the victim’s disposition caused the rape and not the situation she was in. Methods The subjects in the study were 500 randomly sampled undergraduate students from McGill, Concordia, Université de Montréal and UQAM. Dispositional Worldview was scored on the Dispositionist Worldview Questionnaire. After reading the Rape Scenarios, each student was asked to play the role of a juror and answer a questionnaire consisting of 7 questions about the responsibility, causality and fault of the victim. Results The results confirm the hypothesis which states that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. By doing so, the juror commits the fundamental attribution error because he will believe that the victim’s disposition, and not the constraints or opportunities of the situation, caused the rape scenario.Keywords: bias, expert/witness testimony, attribution error, jury, rape myth
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186114 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.
Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129113 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology
Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi
Abstract:
The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263112 Improving Knowledge Management Practices in the South African Healthcare System
Authors: Kgabo H. Badimo, Sheryl Buckley
Abstract:
Knowledge is increasingly recognised in this, the knowledge era, as a strategic resource, by public sector organisations, in view of the public sector reform initiatives. People and knowledge play a vital role in attaining improved organisational performance and high service quality. Many government departments in the public sector have started to realise the importance of knowledge management in streamlining their operations and processes. This study focused on knowledge management in the public healthcare service organisations, where the concept of service provider competitiveness pales to insignificance, considering the huge challenges emanating from the healthcare and public sector reforms. Many government departments are faced with challenges of improving organisational performance and service delivery, improving accountability, making informed decisions, capturing the knowledge of the aging workforce, and enhancing partnerships with stakeholders. The purpose of this paper is to examine the knowledge management practices of the Gauteng Department of Health in South Africa, in order to understand how knowledge management practices influence improvement in organisational performance and healthcare service delivery. This issue is explored through a review of literature on dominant views on knowledge management and healthcare service delivery, as well as results of interviews with, and questionnaire responses from, the general staff of the Gauteng Department of Health. Web-based questionnaires, face-to-face interviews and organisational documents were used to collect data. The data were analysed using both the quantitative and qualitative methods. The central question investigated was: To what extent can the conditions required for successful knowledge management be observed, in order to improve organisational performance and healthcare service delivery in the Gauteng Department of Health. The findings showed that the elements of knowledge management capabilities investigated in this study, namely knowledge creation, knowledge sharing and knowledge application, have a positive, significant relationship with all measures of organisational performance and healthcare service delivery. These findings thus indicate that by employing knowledge management principles, the Gauteng Department of Health could improve its ability to achieve its operational goals and objectives, and solve organisational and healthcare challenges, thereby improving organisational performance and enhancing healthcare service delivery in Gauteng.
Keywords: Knowledge Management, Healthcare Service Delivery, Public Healthcare, Public Sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4537111 Enhancing Cooperation Between LEAs and Citizens: The INSPEC2T Approach
Authors: George Leventakis, George Kokkinis, Nikos Moustakidis, George Papalexandratos, Ioanna Vasiliadou
Abstract:
Enhancing the feeling of public safety and crime prevention are tasks customarily assigned to the Police. Police departments have, however, recognized that traditional ways of policing methods are becoming obsolete; Community Policing (CP) philosophy; however, when applied appropriately, leads to seamless collaboration between various stakeholders like the Police, NGOs and the general public and provides the opportunity to identify risks, assist in solving problems of crime, disorder, safety and crucially contribute to improving the quality of life for everyone in a community. Social Media, on the other hand, due to its high level of infiltration in modern life, constitutes a powerful mechanism which offers additional and direct communication channels to reach individuals or communities. These channels can be utilized to improve the citizens’ perception of the Police and to capture individual and community needs, when their feedback is taken into account by Law Enforcement Agencies (LEAs) in a structured and coordinated manner. This paper presents research conducted under INSPEC2T (Inspiring CitizeNS Participation for Enhanced Community PoliCing AcTions), a project funded by the European Commission’s research agenda to bridge the gap between CP as a philosophy and as an organizational strategy, capitalizing on the use of Social Media. The project aims to increase transparency, trust, police accountability, and the role of civil society. It aspires to build strong, trusting relationships between LEAs and the public, supporting two-way, contemporary communication while at the same time respecting anonymity of all affected parties. Results presented herein summarize the outcomes of four online multilingual surveys, focus group interviews, desktop research and interviews with experts in the field of CP practices. The above research activities were conducted in various EU countries aiming to capture requirements of end users from diverse backgrounds (social, cultural, legal and ethical) and determine public expectations regarding CP, community safety and crime prevention.
Keywords: Community partnerships, next generation community policing, public safety, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536110 Conflation Methodology Applied to Flood Recovery
Authors: E. L. Suarez, D. E. Meeroff, Y. Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.
Keywords: Community resilience, conflation, flood risk, nuisance flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162109 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: M. A. Putera, N. Yasufuku, A. Alowaisy, R. Ishikura, J. G. Hussary, A. Rifa’i
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young’s modulus (E0), Poisson ratio (υ0) and Shear modulus (G0) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.
Keywords: Cement content, confining pressure, high-speed railway, small strain ranges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 429108 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3238107 Adaptive WiFi Fingerprinting for Location Approximation
Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan
Abstract:
WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.
Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3466106 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577105 The Impact of Information and Communication Technology in Education: Opportunities and Challenges
Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif
Abstract:
The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.Keywords: Information and communication technology, ICT, education, ICT infrastructure, teacher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3898104 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility
Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata
Abstract:
Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.
Keywords: Chemical Processing Facility, medium- and long-term management plan of JAEA Facilities, STRAD project, treatment of radioactive waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884103 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites
Authors: A. Atli, K. Candelier, J. Alteyrac
Abstract:
Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.
Keywords: Biodegradability, durability, mechanical properties, melt flow index, spectrophotometry, structural properties, thermal properties, wood-plastic composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055102 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS
Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer
Abstract:
Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).
Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714101 Microstructure and Mechanical Characterization of Heat Treated Stir Cast Silica (Sea Sand) Reinforced 7XXX Al Alloy MMCs
Authors: S. S. Sharma, Jagannath K, P. R. Prabhu
Abstract:
Metal matrix composites consists of a metallic matrix combined with dispersed particulate phase as reinforcement. Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in 7XXX Al alloys that will ensure their use in significant quantities for the time to come. Particulate MMCs are of special interest owing to the low cost of their raw materials (primarily natural river sand here) and their ease of fabrication, making them suitable for applications requiring relatively high volume production. 7XXX Al alloys are precipitation hardenable and therefore amenable for thermomechanical treatment. Al–Zn alloys reinforced with particulate materials are used in aerospace industries in spite of the drawbacks of susceptibility to stress corrosion, poor wettability, poor weldability and poor fatigue resistance. The resistance offered by these particulates for the moving dislocations impart secondary hardening in turn contributes strain hardening. Cold deformation increases lattice defects, which in turn improves the properties of solution treated alloy. In view of this, six different Al–Zn–Mg alloy composites reinforced with silica (3 wt. % and 5 wt. %) are prepared by conventional semisolid synthesizing process. The cast alloys are solution treated and aged. The solution treated alloys are further severely cold rolled to enhance the properties. The hardness and strength values are analyzed and compared with silica free Al – Zn-Mg alloys. Precipitation hardening phenomena is accelerated due to the increased number of potential sites for precipitation. Higher peak hardness and lesser aging time are the characteristics of thermo mechanically treated samples. For obtaining maximum hardness, optimum number and volume of precipitate particles are required. The Al-5Zn-1Mg with 5% SiO2 alloy composite shows better result.
Keywords: Dislocation, hardness, matrix, thermomechanical, precipitation hardening, reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853100 Online Think–Pair–Share in a Third-Age ICT Course
Authors: Daniele Traversaro
Abstract:
Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have Information and Communication Technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. Research Question: Is collaborative learning suitable and effective, in terms of student engagement and learning outcomes, in an online ICT course for the elderly? Methods: In the TPS strategy a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Groups achieve better results than individual students (with scores greater than one order of magnitude) and most students found TPS helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is suitable for an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our work has several limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as future direction.
Keywords: Collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65099 Teachers Leadership Dimension in History Learning
Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan
Abstract:
The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.Keywords: Teacher leadership, leadership lessons, effective classroom, effective teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113898 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models
Authors: N. Mirzaei Varzeghani, M. Saffarzadeh, A. Naderan, A. Taheri
Abstract:
Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, more passengers aged 55 and older using this airport, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.
Keywords: Multimodal transportation, travel behavior, demand modeling, statistical models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55097 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: Brain-computer interface, BCI, electroencephalography, EEG, finger motion decoding, independent component analysis, pseudo-real-time motion decoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606