Search results for: panel data regression models
9167 Corporate Governance, Shareholder Monitoring and Cost of Debt in Malaysia
Authors: Zulkufly Ramly
Abstract:
This paper attempts to investigate the effect of corporate governance and shareholder monitoring mechanisms on cost of debt of Malaysian listed firms. We assess the quality of corporate governance using comprehensive corporate governance index, which consists of 139 items in six broad categories. We classify shareholder monitoring mechanisms into concentrated ownership, family, insider and government ownerships. Using panel sample from 2003 to 2007, regression results show that high corporate governance quality and concentrated ownership lower firm cost of debt. Debt issuers consider board structure and procedures, board compensation practices, accountability and audit, transparency and social and environmental activities as integral components of a good corporate governance framework.
Keywords: Corporate governance index, cost of debt, ownership structure, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35069166 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data
Authors: Wei Lei, Hui Chen, Lin Lu
Abstract:
Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20049165 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria
Authors: Kenneth M. Oba
Abstract:
This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.
Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7919164 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters
Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua
Abstract:
This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.Keywords: Web service, discovery, semantic, SOA, registry, UDDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14869163 Polymer Industrial Floors - The Possibility of Using Secondary Raw Materials from Solar Panels
Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova
Abstract:
The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.
Keywords: Fillers, industrial floors, recycling, secondary raw material, solar panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17729162 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14619161 Urbanization and Income Inequality in Thailand
Authors: Acumsiri Tantiakrnpanit
Abstract:
This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020, using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for 19 selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.
Keywords: Income inequality, nighttime light, population density, Thailand, urbanization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279160 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.
Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25469159 Corruption, Economic Growth, and Income Inequality: Evidence from Ten Countries in Asia
Authors: Chiung-Ju Huang
Abstract:
This study utilizes the panel vector error correction model (PVECM) to examine the relationship among corruption, economic growth, and income inequality experienced within ten Asian countries over the 1995 to 2010 period. According to the empirical results, we do not support the common perception that corruption decreases economic growth. On the contrary, we found that corruption increases economic growth. Meanwhile, an increase in economic growth will cause an increase in income inequality, although the effect is insignificant. Similarly, an increase in income inequality will cause an increase in economic growth but a decrease in corruption, although the effect is also insignificant.Keywords: Corruption, economic growth, income inequality, panel vector error correction model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33689158 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9379157 A General Regression Test Selection Technique
Authors: Walid S. Abd El-hamid, Sherif S. El-etriby, Mohiy M. Hadhoud
Abstract:
This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.Keywords: Regression testing, Model based testing, Dynamicbehavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19799156 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.
Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35189155 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility
Authors: Etienne Provencal, David L. St-Pierre
Abstract:
A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.
Keywords: EGM, linear regression, model prediction, slot operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15639154 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15199153 Effective Class of Discreet Programing Problems
Authors: Kaziyev G. Z., Nabiyeva G. S., Kalizhanova A.U.
Abstract:
We consider herein a concise view of discreet programming models and methods. There has been conducted the models and methods analysis. On the basis of discreet programming models there has been elaborated and offered a new class of problems, i.e. block-symmetry models and methods of applied tasks statements and solutions.Keywords: Discreet programming, block-symmetry, analysis methods, information systems development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13469152 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems
Authors: Md. Noman Habib Khan, S. Khan, T. S. Gunawan, R. I. Boby
Abstract:
The photovoltaic (PV) panel with no galvanic isolation system is well known technique in the world which is effective and delivers power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results shown in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.Keywords: Photovoltaic (PV) panel, Duty cycle, Pulse Duration Modulation (PDM), Leakage current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14599151 Models of State Organization and Influence over Collective Identity and Nationalism in Spain
Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel
Abstract:
The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16889150 A Martingale Residual Diagnostic for Logistic Regression Model
Authors: Entisar A. Elgmati
Abstract:
Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.
Keywords: Covariance, logistic model, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18789149 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product on Nigeria’s Economy
Authors: K. P. Oyeduntan, K. Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the sparkplug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria.
Keywords: Economy, GDP, maritime transport, port, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429148 Recent Trends in Supply Chain Delivery Models
Authors: Alfred L. Guiffrida
Abstract:
A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.
Keywords: Delivery performance, Delivery window, Supply chain delivery models, Supply chain performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23489147 Numerical Simulation of a Single Air Bubble Rising in Water with Various Models of Surface Tension Force
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
Different numerical methods are employed and developed for simulating interfacial flows. A large range of applications belong to this group, e.g. two-phase flows of air bubbles in water or water drops in air. In such problems surface tension effects often play a dominant role. In this paper, various models of surface tension force for interfacial flows, the CSF, CSS, PCIL and SGIP models have been applied to simulate the motion of small air bubbles in water and the results were compared and reviewed. It has been pointed out that by using SGIP or PCIL models, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.
Keywords: Volume-of-Fluid, Bubble Rising, SGIP model, CSS model, CSF model, PCIL model, interface, surface tension force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17849146 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: Audit, machine learning, assessment, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10259145 Improvement of MLLR Speaker Adaptation Using a Novel Method
Authors: Ing-Jr Ding
Abstract:
This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.Keywords: hidden Markov model, maximum likelihood linearregression, speech recognition, speaker adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18429144 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)
Authors: Mingren Shi, Michael Renton
Abstract:
There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.
Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15849143 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.
Keywords: Global warming, rainfall, CMIP5, CORDEX, North Western Himalayan region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10939142 Photogrammetry and GIS Integration for Archaeological Documentation of Ahl-Alkahf, Jordan
Authors: Rami Al-Ruzouq, Abdallah Al-Zoubi, Abdel-Rahman Abueladas, Petya Dimitrova
Abstract:
Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.
Keywords: Archaeology, close range photogrammetry, ortho-photo, 3D-GIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21639141 Valuing Environmental Impact of Air Pollution in Moscow with Hedonic Prices
Authors: V. Komarova
Abstract:
The main purpose of this research is the calculation of implicit prices of the environmental level of air quality in the city of Moscow on the basis of housing property prices. The database used contains records of approximately 20 thousand apartments and has been provided by a leading real estate agency operating in Russia. The explanatory variables include physical characteristics of the houses, environmental (industry emissions), neighbourhood sociodemographic and geographic data: GPS coordinates of each house. The hedonic regression results for ecological variables show «negative» prices while increasing the level of air contamination from such substances as carbon monoxide, nitrogen dioxide, sulphur dioxide, and particles (CO, NO2, SO2, TSP). The marginal willingness to pay for higher environmental quality is presented for linear and log-log models.
Keywords: Air pollution, environment, hedonic prices, real estate, willingness to pay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19739140 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22359139 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: D. Hişam, S. İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.
Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679138 Development of Environment Friendly Mimosa Tannin-Cornstarch Based Wood Adhesive
Authors: Salise Oktay, Nilgün Kızılcan, Başak Bengü
Abstract:
At present, formaldehyde-based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine-urea formaldehyde (MUF) etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non-renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood-based panel industry requirements. In this study, as formaldehyde free adhesive, tannin and starch-based wood adhesive was synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate chemical structures of the cured adhesive samples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in laboratory scale and mechanical, physical properties of the boards were investigated. Besides, formaldehyde contents of the boards were determined by using perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use in wood-based panel industry with some developments.
Keywords: Wood adhesive, cornstarch, mimosa tannin, particleboard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414