Search results for: semantic segmentation
263 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge
Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang
Abstract:
Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.Keywords: Text classification, Text clustering, Text similarity, Wikipedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117262 Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies
Authors: K. M. Ravikumar, Balakrishna Reddy, R. Rajagopal, H. C. Nagaraj
Abstract:
Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.Keywords: Assessment, DTW, MFCC, Objective, Perceptron, Stuttering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812261 Natural Language Database Interface for Selection of Data Using Grammar and Parsing
Authors: N. D. Karande, G. A. Patil
Abstract:
Databases have become ubiquitous. Almost all IT applications are storing into and retrieving information from databases. Retrieving information from the database requires knowledge of technical languages such as Structured Query Language (SQL). However majority of the users who interact with the databases do not have a technical background and are intimidated by the idea of using languages such as SQL. This has led to the development of a few Natural Language Database Interfaces (NLDBIs). A NLDBI allows the user to query the database in a natural language. This paper highlights on architecture of new NLDBI system, its implementation and discusses on results obtained. In most of the typical NLDBI systems the natural language statement is converted into an internal representation based on the syntactic and semantic knowledge of the natural language. This representation is then converted into queries using a representation converter. A natural language query is translated to an equivalent SQL query after processing through various stages. The work has been experimented on primitive database queries with certain constraints.
Keywords: Natural language database interface, representation converter, syntactic and semantic knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705260 Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems
Authors: Tengku Mohd T. Sembok
Abstract:
Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems.Keywords: Information Retrieval, Natural Language Processing, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258259 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704258 Application of Kansei Engineering and Association Rules Mining in Product Design
Authors: Pitaktiratham J., Sinlan T., Anuntavoranich P., Sinthupinyo S.
Abstract:
The Kansei engineering is a technology which converts human feelings into quantitative terms and helps designers develop new products that meet customers- expectation. Standard Kansei engineering procedure involves finding relationships between human feelings and design elements of which many researchers have found forward and backward relationship through various soft computing techniques. In this paper, we proposed the framework of Kansei engineering linking relationship not only between human feelings and design elements, but also the whole part of product, by constructing association rules. In this experiment, we obtain input from emotion score that subjects rate when they see the whole part of the product by applying semantic differentials. Then, association rules are constructed to discover the combination of design element which affects the human feeling. The results of our experiment suggest the pattern of relationship of design elements according to human feelings which can be derived from the whole part of product.Keywords: Association Rules Mining, Kansei Engineering, Product Design, Semantic Differentials
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525257 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy
Authors: S.Jerald Jeba Kumar, M.Madheswaran
Abstract:
The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043256 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938255 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446254 A Multilanguage Source Code Retrieval System Using Structural-Semantic Fingerprints
Authors: Mohamed Amine Ouddan, Hassane Essafi
Abstract:
Source code retrieval is of immense importance in the software engineering field. The complex tasks of retrieving and extracting information from source code documents is vital in the development cycle of the large software systems. The two main subtasks which result from these activities are code duplication prevention and plagiarism detection. In this paper, we propose a Mohamed Amine Ouddan, and Hassane Essafi source code retrieval system based on two-level fingerprint representation, respectively the structural and the semantic information within a source code. A sequence alignment technique is applied on these fingerprints in order to quantify the similarity between source code portions. The specific purpose of the system is to detect plagiarism and duplicated code between programs written in different programming languages belonging to the same class, such as C, Cµ, Java and CSharp. These four languages are supported by the actual version of the system which is designed such that it may be easily adapted for any programming language.Keywords: Source code retrieval, plagiarism detection, clonedetection, sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793253 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image
Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati
Abstract:
This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.Keywords: Connected component, preprocessing manuscript image, projection profiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923252 A Method for Iris Recognition Based on 1D Coiflet Wavelet
Authors: Agus Harjoko, Sri Hartati, Henry Dwiyasa
Abstract:
There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.Keywords: Biometric, iris recognition, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906251 Domain Knowledge Representation through Multiple Sub Ontologies: An Application Interoperability
Authors: Sunitha Abburu, Golla Suresh Babu
Abstract:
The issues that limit application interoperability is lack of common vocabulary, common structure, application domain knowledge ontology based semantic technology provides solutions that resolves application interoperability issues. Ontology is broadly used in diverse applications such as artificial intelligence, bioinformatics, biomedical, information integration, etc. Ontology can be used to interpret the knowledge of various domains. To reuse, enrich the available ontologies and reduce the duplication of ontologies of the same domain, there is a strong need to integrate the ontologies of the particular domain. The integrated ontology gives complete knowledge about the domain by sharing this comprehensive domain ontology among the groups. As per the literature survey there is no well-defined methodology to represent knowledge of a whole domain. The current research addresses a systematic methodology for knowledge representation using multiple sub-ontologies at different levels that addresses application interoperability and enables semantic information retrieval. The current method represents complete knowledge of a domain by importing concepts from multiple sub ontologies of same and relative domains that reduces ontology duplication, rework, implementation cost through ontology reusability.
Keywords: Knowledge acquisition, knowledge representation, knowledge transfer, ontologies, semantics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971250 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.
Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204249 Optic Disc Detection by Earth Mover's Distance Template Matching
Authors: Fernando C. Monteiro, Vasco Cadavez
Abstract:
This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.
Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006248 A Knowledge-Based E-mail System Using Semantic Categorization and Rating Mechanisms
Authors: Azleena Mohd Kassim, Muhamad Rashidi A. Rahman, Yu-N. Cheah
Abstract:
Knowledge-based e-mail systems focus on incorporating knowledge management approach in order to enhance the traditional e-mail systems. In this paper, we present a knowledgebased e-mail system called KS-Mail where people do not only send and receive e-mail conventionally but are also able to create a sense of knowledge flow. We introduce semantic processing on the e-mail contents by automatically assigning categories and providing links to semantically related e-mails. This is done to enrich the knowledge value of each e-mail as well as to ease the organization of the e-mails and their contents. At the application level, we have also built components like the service manager, evaluation engine and search engine to handle the e-mail processes efficiently by providing the means to share and reuse knowledge. For this purpose, we present the KS-Mail architecture, and elaborate on the details of the e-mail server and the application server. We present the ontology mapping technique used to achieve the e-mail content-s categorization as well as the protocols that we have developed to handle the transactions in the e-mail system. Finally, we discuss further on the implementation of the modules presented in the KS-Mail architecture.Keywords: E-mail rating, knowledge-based system, ontology mapping, text categorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449247 Multi-Agents Coordination Model in Inter- Organizational Workflow: Applying in Egovernment
Authors: E. Karoui Chaabane, S. Hadouaj, K. Ghedira
Abstract:
Inter-organizational Workflow (IOW) is commonly used to support the collaboration between heterogeneous and distributed business processes of different autonomous organizations in order to achieve a common goal. E-government is considered as an application field of IOW. The coordination of the different organizations is the fundamental problem in IOW and remains the major cause of failure in e-government projects. In this paper, we introduce a new coordination model for IOW that improves the collaboration between government administrations and that respects IOW requirements applied to e-government. For this purpose, we adopt a Multi-Agent approach, which deals more easily with interorganizational digital government characteristics: distribution, heterogeneity and autonomy. Our model integrates also different technologies to deal with the semantic and technologic interoperability. Moreover, it conserves the existing systems of government administrations by offering a distributed coordination based on interfaces communication. This is especially applied in developing countries, where administrations are not necessary equipped with workflow systems. The use of our coordination techniques allows an easier migration for an e-government solution and with a lower cost. To illustrate the applicability of the proposed model, we present a case study of an identity card creation in Tunisia.Keywords: E-government, Inter-organizational workflow, Multi-agent systems, Semantic web services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280246 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032245 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162244 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.
Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421243 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: Video tracking, particle filter, greedy snake, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193242 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm
Authors: Nameer N. EL-Emam
Abstract:
In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989241 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro
Abstract:
One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779240 Data Security in a DApp Twitter Alike on Web 3.0 With Blockchain Based Technology
Authors: Vishal Awasthi, Tanya Soni, Vigya Awasthi, Swati Singh, Shivali Verma
Abstract:
There is a growing demand for a network that grants a high level of data security and confidentiality. For this reason, the semantic web was introduced, which allows data to be shared and reused across applications while safeguarding users privacy and user’s will grab back control of their data. The earlier Web 1.0 and Web 2.0 versions were built on client-server architecture, in which there was the risk of data theft and unconsented sale of user data. A decentralized version, Known as Web 3.0, that is mostly built on blockchain technology was interjected to resolve these issues. The recent research focuses on blockchain technology, deals with privacy, security, transparency, and innovation of decentralized applications (DApps), e.g. a Twitter Clone, Whatsapp clone. In this paper the Twitter Alike built on the Ethereum blockchain will replace traditional techniques with improved latency, throughput, and data ownership. The central principle of this DApp is smart contract implemented using Solidity which is an object- oriented and highlevel language. Consequently, this will provide a better Quality Services, high data security, and integrity for both present and future internet technologies.
Keywords: Blockchain, DApps, Ethereum, Semantic Web, Smart Contract, Solidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334239 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: Agricultural engineering, computer vision, image processing, flower detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367238 Intensifier as Changed from the Impolite Word in Thai
Authors: Methawee Yuttapongtada
Abstract:
Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.
Keywords: Impolite word, intensifier, Thai, semantic change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310237 Video Matting based on Background Estimation
Authors: J.-H. Moon, D.-O Kim, R.-H. Park
Abstract:
This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.
Keywords: Background estimation, Object segmentation, Blockmatching algorithm, Video matting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813236 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.
Keywords: Control process, metrics of engineering, structured abstraction, semantic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742235 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.
Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763234 Highlighting Document's Structure
Authors: Sylvie Ratté, Wilfried Njomgue, Pierre-André Ménard
Abstract:
In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).
Keywords: Information retrieval, document structures, symbolic grammars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227