

Abstract—Source code retrieval is of immense importance in the

software engineering field. The complex tasks of retrieving and
extracting information from source code documents is vital in the
development cycle of the large software systems. The two main
subtasks which result from these activities are code duplication
prevention and plagiarism detection. In this paper, we propose a
multilanguage source code retrieval system based on two-level
fingerprint representation, respectively the structural and the
semantic information within a source code. A sequence alignment
technique is applied on these fingerprints in order to quantify the
similarity between source code portions. The specific purpose of the
system is to detect plagiarism and duplicated code between programs
written in different programming languages belonging to the same
class, such as C, C++, Java and CSharp. These four languages are
supported by the actual version of the system which is designed such
that it may be easily adapted for any programming language.

Keywords—Source code retrieval, plagiarism detection, clone
detection, sequence alignment.

I. INTRODUCTION
N a world dominated by the information technology the
internal communication channels of any company are

packed with sensitive, confidential information and digital
assets such as R&D developments and software source codes.
With the explosive amount of accessible information in the
recent years, corporations are naturally apprehensive that
sensitive information might find its way into the hands of
competitors or even on the Internet network. Therefore it is
essential that companies prevent the leak of its confidential
information and protects its intellectual property rights.
Software source codes are a part of this confidential
information and provide vital support for the development and
the prosperity of any company.

Two activities result from these requirements, the fist one
consist of protecting the software against illicit exploitation
and detecting different source code plagiarism cases. With the
evolution of Internet and the search engines the free access to
the source code makes plagiarism of the open-source software
possible without respecting affiliated licenses.

Manuscript received May 25, 2007.
Mohamed Amine Ouddan is with Marne la Vallée University (ICMS) and

R&D department, Advestigo compagny, 140 Bureaux de la Collines 92210
Saint-Cloud, France (phone: +33 1 72 77 70 13; fax: +33 1 46 89 68 60; e-
mail: amine.ouddan@advestigo.com).

Hassane Essafi is with R&D department, Advestigo compagny, 140
Bureaux de la Collines 92210 Saint-Cloud, France (phone: +33 1 72 77 70 03;
fax: +33 1 46 89 68 60; e-mail: hassane.essafi@advestigo.com).

The second activity consists of keeping the software system
up-to-date and functioning properly [1][2][3]. The constant
evolution of the software requires at the same time continuous
modifications and maintenance of the source codes.
Duplicated code complicates this activity and leads to higher
maintenance cost because the same bugs will need to be fixed
and consequently more code will need to be tested. It is
reported by Burd[4] that “during the maintenance of legacy
code, it is common to identify areas of replicated code”, and it
is suspected that quantity of the duplicated code is in general
between 5% to 10% and can go up to 50% [5][6][7].

In this paper, we propose a multilanguage source code
retrieval system using an original similarity measure approach,
which is based on the characterization of the source code by
extracting and combining structural and semantic information.
Using the concept of Grammar-Actions a set of salient
components and salient elements are detected and
characterized by sequences called respectively "Structural
sequences" and "Genetic sequences". The sequences are
composed of specific symbols which constitute the knowledge
resources of each programming language (C, C++, Java and
CSharp). These resources reflect the main structural and
semantic features of each language. As shown in Fig. 1, the
sequences are embedded into two-level fingerprint structure,
where the first level encloses the structural content of the
source code and the second level contains the semantic one.
Applying sequences alignment technique, we quantify the
similarity between two fingerprints which is considered as an
abstraction of plagiarism rate (or duplicated rate). Fig. 1
illustrates the architecture of the system. A detection language
phase is applied to each code in order to use the adequate
parser and to load the corresponding knowledge resources.

The paper is structured as follows: In section II, we present
the main related works. The fingerprint extraction and the
similarity measure are respectively described in sections III
and IV. In section V, we present a set of experiment results in
order to evaluate the robustness of the system against several
source code transformations. Finally, we present our
conclusions and perspectives in section VI.

A Multilanguage Source Code Retrieval System
Using Structural-Semantic Fingerprints

Mohamed Amine Ouddan, and Hassane Essafi

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

575International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

II. RELATED WORKS
Similarity measure between two source codes relies on their

representation. Different approaches have been proposed
towards the source code content access, which can be
classified into two main categories according to their
representation model. These categories regroup respectively
the statistical approaches and the structural approaches.

A. Statistical Approaches
Statistical approaches are based on the vector-space model

where each source code is represented by a characteristic
vector, and the similarity between codes is then calculated by
a distance measure in this space. Using the Halstead’s
software science metrics [8], the characteristic vector is
computed in order to reflect the complexity of the represented
source code. In [9] a vector of four metrics is assigned to the
source code representing respectively the number of operator
occurrences, the number of operand occurrences, the number
of distinct operators, and the number of the distinct operands.

To improve the robustness of the characteristic vector and
the precision of the similarity measure, several metrics were

proposed [10] such as the number of variables, functions,
conditional statements, iterative statements, and assignment
statements. Faidhi and Robinson [11] have nominate a set of
uncorrelated metrics like the average number of characters per
line, the conditional and iterative statement percentage, the
average identifier length, etc.

B. Structural Approaches
The structural approaches are more powerful than the

statistical ones for the plagiarism detection [12] due to the
poor representation of the vector-space model in terms of
structural information. Hence, the aim idea of the structural
approaches is to convert the source code content into a
compact representation according a specific model in order to
encode the basic and relevant structural information. The two
main models used in this way are the conceptual graphs model
and token strings model.

The conceptual graph model proposed by John Sowa [13]
and used in the knowledge representation area was applied in
the context of source code retrieval [14]. Each node reflect
either a structural concept (such as statements, function,
variable, etc) or structural relation between two concepts
(such as condition for branching statement, a concept is a
parameter of another concept, dependence between two
concepts, etc).
In the second model the approach consist of converting the
source code into a sequence of tokens and then using an
appropriate sequence comparison algorithm to find similar
tokens. The most important tools in the context of plagiarism
detection, which use the token string representation, are
YAP3[15] Jpalg[16] and Moss[17].

III. SOURCE CODE FINGERPRINT EXTRACTION
In order to extract the main features from each source code

and construct its fingerprint, structural and semantic content
access is based on the grammar of the programming language
denoted GL. Thus the grammar GL must be synchronized with
a set of actions called "characteristic actions" which allow the
translation of the source code from the programming language
to the fingerprint language. Each programming language has
its own syntax according a set of grammatical specifications,
which reflect the structural and the semantic features of the
corresponding source codes. Therefore, the fingerprint
extraction must take into account both the structural and the
semantic content of the source code in order to improve the
pertinence and the precision of the retrieval task.

A. The Concept of Grammar-Actions
The notion of trace is an universal characteristic for many

programming languages which is defined by Hoare [18] as an
association between the program and the result which its
provides: "It should be possible to associate with each
program of a language a set of possible traces of the execution
of that program; this association provides a 'mechanism'
formal definition of the language ". Thus, in the context of
characterization we distinguish two kinds of traces that result

Similarity
measure

Structural level Semantic level

C++

Query
source code

Language
detection

Lexical and
syntax analyzer

Java

C++
C#

Program sourcesKnowledge resources
of detected language

Language
detection

Lexical and
syntax analyzer

Knowledge resources
of detected language

Structural level Semantic level

Database
fingerprint

s

Query
fingerprint

Fig. 1 Framework of the multilanguage source code
retrieval system

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

576International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

during the parsing of the source code. Syntactic trace which
reflect the structural features of the parsed code, and execution
trace which reflect its semantic features.

As mentioned previously, we have to construct a translator
that allow conversion of structural and semantic contents into
a two-level fingerprint, which is considered respectively as an
abstraction of the syntactic and the semantic traces. The
translator is based on the concept of Grammar-Actions where
the aim idea is to assign significance (in context of
characterization and traceability) to the parsing process.
Therefore, with each grammar rule we associate a set of
actions to be executed each time the grammar rule is
recognized during the parsing process. These actions may
achieve four vital tasks for our approach:

1. Extraction of salient components: the modularity

feature supports partial plagiarism. Indeed it is
important to protect both the totality of the code and
its independent portions. A salient component is
defined as a portion of the code that can be re-used
separately in another code in different context (e.g.
the plagiarized code). The concept of salient
component differs according to the programming
language, thus the task of extraction must be
harmonized with the grammar of the language.

2. Generate structural sequences: this task reflect the

notion of modular characterization. Therefore, for
each salient component a structural sequence is
generated in order to characterize both the totality of
the code and all its independent portions.

3. Extraction of salient elements: the goal idea of this

task is to detect the most elementary entities within a
source code, i.e. the dynamic elements which achieve
the interaction between the different portions of the
code where their modification (or deletion) affect the
behavior of the related program. The concept of
salient element varies according to the programming
language. As in the first task, the extraction of salient
elements is based on the grammar of the language.

4. Generate genetic sequences: this task is considered to

be an abstraction of the semantic trace.
Consequently, for each salient element a genetic
sequence is generated in order to characterize its
activity and traceability during the program
execution.

Required knowledge resources specific to the programming

language must be constructed in order to achieve the tasks 2
and 4 (generation of the structural and semantic sequences).
The "Grammar Dictionary" [19] represent the first kind of
resource which is denoted GDL and considered as an
association between the main structural programming

concepts within the language L and the corresponding
structural symbols. Formally, the GDL is defined as a binary
relation from the programming concept set to the structural
symbols set:

 SymbolsStructuralConceptsGDL →:
 iR → ja

The "Semantic Dictionary" represent the second kind of
resource which is denoted SDL and considered as an
association between all the operations that describe the
activity of the salient elements and the corresponding
semantic symbols. Formally, the SDL is defined as a binary
relation between the allowed operations set to the semantic
symbols set:

 mbolsSemanticSyOperationsSDL →:
 iop → jb

B. Structural-Level Fingerprint
The structural-level fingerprint symbolizes an abstraction of

the syntactic trace, which reflects the main structural features
of the source code. Using the Grammar Dictionary each
salient component is characterized by a sequence of structural
symbols which are referred to the programming concepts that
were recognized during the parsing process. The structural
sequence of the salient component Ai is defined as:

>=< nAi aaaS ,...,, 21 / njGDa Lj ,...,1, =∀∈

The structural symbols must characterize the essence

content of the source code, i.e. all the main programming
concepts within the language L

C. Semantic-Level Fingerprint
The semantic-level fingerprint describes the activity and the

traceability of the salient elements throughout the program
execution. This traceability is represented by the succession of
the operations where the salient element participates such as
arithmetic expressions or evaluation of a "while" loop
conditions. Therefore, using the Semantic Dictionary each
salient element is characterized by a sequence of semantic
symbols which is considered as a signal reflecting the
evolution of the element during the execution. The genetic
sequence of the salient element Bi is defined bellow:

>=< mBi bbbS ,...,, 21 / mjSDb Lj ,...,1, =∀∈

Thus, the genetic sequences of each salient element within

the source code characterize its semantic content. The
semantic symbols must characterize all the main operations
allowed by the language L which represent the essence of its
semantic.

Fig. 2 recapitulates the fingerprint extraction scheme of any
source code written in the programming language L:

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

577International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

D. Multilanguage Characterization
A multilanguage characterization is possible due to the

modular architecture of the Grammar-Actions concept.
Therefore our system allows identical characterization of two
similar codes written in different languages such as C/C++
and Java. This property requires homogenizing both the
Structural Dictionary and the Semantic Dictionary, i.e. the
programming concepts which are presents in the two
languages must be characterized by the same symbol:

{ }≠++ JavaCC GDGD ∩/ and { }≠++ JavaCC SDSD ∩/

For example the concept of iterative statement is present in

the four languages C/C++, java and CSharp and must be
characterized by the same structural and semantic symbol.
This property allows more relevance against the translation of
the programming language used in several plagiarism cases. It
is also helpful during the maintenance of the multilanguage
software systems.

IV. THE SIMILARITY MEASURE
As mentioned above, the similarity measure consists of

quantifying the plagiarism rate (or duplicated rate) between
codes according to their structural and genetic sequences. This
phase is based on a language-independent approach which is
decomposed into two steps:

1. A sequence alignment technique is applied between each

pairs of structural sequences and each pairs of genetic
sequences in order to achieve structural and semantic
matching.

2. Two scores corresponding respectively to the structural

and the semantic similarity between the compared codes
are computed using the result of the structural and
semantic matching.

A. Sequence Alignment
For the structural and the genetic alignments we employ the

Dotplot technique [20] which was also used successfully in
our audio retrieval system [21]. The similarity value between
the sequences A and B is computed using the following
equation:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑∑ ++

B

Seq

A

Seq
BASim j

B
j

i

A
i

,max),(

Where, SeqA+ and SeqB+ represent all the longest
common sub-sequences without overlapping any inclusion
between them.

B. Fingerprint Matching
The fingerprint matching is distilled into two levels. The

first level called structural matching consists of producing a
mapping between the similar salient components of the two
compared codes according to the structural sequence
similarities. Therefore the structural similarity between the
codes d and q is computed as follow:

N

SSSim
qdScoreStructural

N

i
AjAki∑

== 1
),(

),(

Where:
- SAk and SAj represent the structural sequences of the kth and jth
salient component within d and q.
- N represents the number of the best structural matching.

In the second level, the semantic matching consists of

producing a mapping between each pair of similar salient
elements within the compared codes according to the genetic
sequence similarities. The semantic similarity between each
pair of codes is computed as follow:

M

SSSim
qdoreSemanticSc

M

i
BjBki∑

== 1
),(

),(

Where:
- SBk and SBj represent the structural sequences of the kth and jth
salient element within d and q.
- M represents the number of the best semantic matching.

V. EXPERIMENTS AND EVALUATION
The system is implemented using the C++ language, and we

used the Antlr tool [22] which is the appropriate solution to
achieve the concept of Grammar-Actions.

In this section we describe our data sets and the evaluation
of the robustness of the system against the different

...
if (a!=b)
 a = b+2;
while (a)
...

Parsing

Recognized
rules

Grammar
Dictionary

Semantic
Dictionary

Genetic sequences
a : b7 b11 b12 b5
b : b7 b10

Fig. 2 Fingerprint extraction

Execution of the
associated actions

Structural sequence
a7 a12 a10 a12 a5 a12

Knowledge resources
of the language L

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

578International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

transformations that occur during the plagiarism and
duplication of code. These transformations range from the
very simple such as the simple Copy/Paste to the more
complex such as alteration of the control flow as shown in
Table II.

For our experiments, we constitute a collection of 533
source codes (200 Java sources, 143 C/C++ source and 190
CSharp sources). The dataset consists of 179701 lines (76183
for Java, 39167 for C/C++, and 64351 for CSharp). The
dataset contain also the five source codes presented in Tables
II to IV.

The code presented in Table III is a plagiarized version of
the original code in Table II. The transformations that occur
during the plagiarism operation are the modification of the
variables names and the alteration of the control flow by
grouping code portions in new functions (f1 and f2).

The original C++ code presented in Table VI is translated
into CSharp and Java codes which are respectively presented
in Tables V and IV.

In order to evaluate the relevance of the system, we query
the five source codes against the dataset. The retrieval system
returns the most similar codes matching the query code where
the obtained results are illustrated in Table I.

TABLE I

RETRIEVAL RESULTS OF THE FIVE QUERY

TABLE II TABLE II TABLE III

Structural score 100 % 86.95%

Semantic score 100 % 100 %

TABLE III TABLE III TABLE II

Structural score 100 % 86.95%

Semantic score 100 % 100 %

TABLE VI TABLE VI TABLE V TABLE IV

Structural score 100 % 95.83 % 70.83 %

Semantic score 100 % 100 % 81.48 %

TABLE V TABLE V TABLE IV TABLE VI

Structural score 100 % 73.68 % 95.83 %

Semantic score 100 % 83.33 % 100 %

TABLE IV TABLE IV TABLE V TABLE VI

Structural score 100 % 73.68 % 70.83 %

Semantic score 100 % 83.33 % 81.48 %

TABLE II
ORIGINAL CODE

TABLE III
PLAGIARIZED CODE

TABLE V
C# CODE

1 int main(){
2 float x=-2.0,y=1.2,z;
3 z=fabs(x);
4 x = pow (x,2);
5 y++;
6 x+=y;
7 z=x+y;
8 printf("%f,%f,%f",x,y,z);
9 if (x>z)
10 y = y/z;
11 if ((y-1)>(y/z))
12 y--;
13 for (;x<200 ;x++)
14 z = z / y*x;
15 return 0;
16 }

2 float l1=-2.0, O1=1.2, l11;
 int f1(){
3 l11=fabs(l1);
4 l1 = pow (l1,2);
5 O1++;
6 l1+= O1;
 return 0;
 }
 int f2(){
7 l11= l1 + O1;
8 printf("%f,%f,%f", l1 , O1 ,
l11);
9 if (l1> l11)
10 O1= O1/ l11;
11 if ((O1-1)>(O1 / l11))
12 O1--;
 while (l1<200){
14 l11= l11/ O1* l1;
 l1++ ;
 }
 }
1 int main(){
 f1();
 f2();
15 return 0;
16 }

1 #define DEBUG
 public class CSharpCode{
2 void f_1(ref float arg1){
3 arg1++;}
4 int f_2(ref double arg1){
5 arg1--;
6 return 0;}
7 public static void Main(){
8 float a=-2.0,b=1.2,c;
9 b++;
10 a+=b;
11 for (int j=0;j<12;j++)
12 c=a+b;
13 if (c>a+b)
14 c--;
15 #if DEBUG
16 Console.WriteLine("debug");
17 #endif
18 double argD = 0;
19 float argF = 0;
20 f_1(ref argF);
21 int res = f_2(ref argD);}
}

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

579International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

TABLE IV
JAVA CODE

TABLE VI
C++ CODE

VI. CONCLUSION
In this paper, we illustrated an efficient and robust source

code retrieval system, which is based on structural-semantic
fingerprint. The obtained results are very satisfying and
particularly for the semantic level where the most queries have
a similarity score more than 80%. Therefore, the structural
sequences are less robust against the alteration of the control
flow. The genetic and structural sequences are invariant to the
translation of the programming language and especially to the
translation from C++ to CSharp and from Java to CSharp.

REFERENCES
[1] M. Fowler and K. Beck, Improving the Design of Existing Code,

Addison-Wesley Professional, 1999.
[2] J. Kerievsky, Refactoring to Patterns, Addison-Wesley Professional,

2004.
[3] J.-P. Retaillé, Refactoring des applications Java/J2EE, Eyrolles, 2005.
[4] E.L. Burd and M. Munro, "Investigating the Maintenance Implications

of the Replication of Code", International Conference on Software
Maintenance, IEEE Computer Society, Bari, Italy, 1-3 October1997.

[5] C. Kapser and M.W. Godfrey, "Toward a taxonomy of clones in source
code: A case study", In Proceedings of the First International Workshop
on Evolution of Large-scale Industrial Software Applications (ELISA),
IEEE, September, 2003.

[6] S. Ducasse, M. Rieger, and S. Demeyer. "A language independent
approach for detecting duplicated code", International Conference on
Software Maintenance, IEEE Computer Society, Oxford, England, 1999,
pages 109–118.

[7] B.S. Baker, "On finding duplication and near-duplication in large
software system", Proceedings of Second Working Conference on
Reverse Engineering, 1995.

[8] M. Halstead, "Elements of Software Science". Elsevier, New York,
1977.

[9] K. Ottenstein, "An algorithmic approach to the detection and prevention
of plagiarism", ACM SIGCSE Bull, Vol 8, 1976, pages 30–41.

[10] J. Donaldson, A. Lancaster, and P. Sposato, "A plagiarism detection
system", ACM SIGCSE Bull, vol 13, 1981, pages15–20.

[11] J.A. Faidhi and S.K. Robinson, "An empirical approach for detecting
program similarity and plagiarism within a university programming
environment", Computer Education, Vol. 11, 1987, pages 11-19.

[12] K. Verco and M. Wise, "Software for detecting suspected plagiarism:
comparing structure and attribute counting systems", Proceedings of the
First Australian Conference on Computer Science Education, In J.
Rosenberg, editor, ACM Press, 1996.

[13] J.F. Sowa, "Conceptual structures: information processing in mind and
machine", In Proceedings of the 1993 ACM/SIGAPP symposium on
applied computing, ACM Press, 1993, pages 476–481.

[14] G. Mishne and M. Rijke, "Source Code Retrieval using Conceptual
Similarity", Language & Inference Technology Group University of
Amsterdam, 2004.

[15] M. Wise, "YAP3: improved detection of similarities in computer
program and other text", In Proc. 27th SIGCSE Technical Symp. on
Computer Science Education, Philadelphia USA, February 15–18, 1996,
pages 130–134.

[16] L. Prechelt, G. Malpohl, and M. Philippsen, "Finding plagiarisms
among a set of programs with Jplag", Technical Report No. 1/00,
University of Karlsruhe, Department of Informatics, March 2000.

[17] A. Aiken, "MOSS: a system for detecting software plagiarism",
University of Berkeley, CA, available
http://www.cs.berkeley.edu/~aiken/moss.html,1998.

[18] C.A.R. Hoare, "Some Properties of Predicate Transformers", Journal of
the ACM, 25(3), July, 1978, pages 461-480.

[19] M.A. Ouddan and H. Essafi, " Caractérisation de Documents Code
Source Basée sur un Dictionnaire de Grammaire: Application à la
Détection de Plagiats", International Conference on Sciences of
Electronic, Technology of Information and Telecommunications, SETIT
2007, IEEE, Tunisia, 25-29 Mars, 2007.

[20] J. Helfman, "Dotplot Patterns: A Literal Look at Pattern Languages",
TAPOS, 2(1), 1995, pages 31-41.

[21] M.A. Ouddan, S. Sayah, M. Taïleb and H.Essafi, "Audio Database
Retrieval Based on Sequence Alignment", ICSES'06, International
Conference on Signals and Electronic Systems, Poland 17-20 Septembre
2006.

[22] http://www.antlr.org/

1 #define DEBUG
2 void CppCode::f_1(float &arg1){
3 arg1++;}
4 int CppCode::f_2(double &arg1){
5 arg1--;
6 return 0;}
7 void main(){
8 float x=-2.0,y=1.2,z;
9 y++;
10 x+=y;
11 for (int i=0;i<12;i++)
12 z=x+y;
13 if (z>x+y)
14 z--;
15 #ifdef DEBUG
16 printf ("debug");
17 #endif
18 double argD = 0;
19 float argF = 0;
20 CppCode::f_1(argF);
21 int res = CppCode::f_2(argD);}

 class ArgDouble{
 public double val;
 public ArgDouble(double arg1){
 val = arg1;}
 }
 public class JavaCode {
 static final boolean DEBUG = true;
2 float f_1(float arg1){
3 arg1++;
return arg1;}
4 int f_2(ArgDouble arg1){
5 arg1.val--;
6 return 0;}
7 public static void main(){
8 float x=-2.0,y=1.2,z;
9 y++;
10 x+=y;
11 for (int i=0;i<12;i++)
12 z=x+y;
13 if (z>x+y)
14 z--;
15 if (DEBUG)
16 System.out.println("debug");
18 ArgDouble argD = new ArgDouble(0);
19 float argF = 0;
20 argF = f_1(argF);
21 int res = f_2(argD);}
 }

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

580International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
93

.p
df

