Search results for: mesh clustering
327 The Balanced Hamiltonian Cycle on the Toroidal Mesh Graphs
Authors: Wen-Fang Peng, Justie Su-Tzu Juan
Abstract:
The balanced Hamiltonian cycle problemis a quiet new topic of graph theorem. Given a graph G = (V, E), whose edge set can be partitioned into k dimensions, for positive integer k and a Hamiltonian cycle C on G. The set of all i-dimensional edge of C, which is a subset by E(C), is denoted as Ei(C).
Keywords: Hamiltonian cycle, balanced, Cartesian product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454326 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.
Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384325 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding
Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos
Abstract:
Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247324 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830323 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering
Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536322 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes
Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini
Abstract:
Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.
Keywords: Modelling, Monte Carlo Simulations, Probabilistic Models, Data Clustering, Reinforced Concrete Members, Structural Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108321 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
Authors: James Kuria, John Kihiu
Abstract:
This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568320 Comparative Study of Pasting Properties of High Fibre Plantain Based Flour Intended for Diabetic Food (Fufu)
Authors: C. C. Okafor, E. E. Ugwu
Abstract:
A comparative study on the feasibility of producing instant high fibre plantain flour for diabetic fufu by blending soy residence with different plantain (Musa spp) varieties (Horn, false Horn and French), all sieved at 60 mesh, mixed in ratio of 60:40 was analyzed for their passing properties using standard analytical method. Results show that VIIIS60 had the highest peak viscosity (303.75 RVU), Trough value (182.08 RVU), final viscosity (284.50 RVU), and lowest in breakdown viscosity (79.58 RVU), set back value (88.17 RVU), peak time (4.36min), pasting temperature (81.18°C) and differed significantly (p <0.05) from other samples. VIS60 had the lowest in peak viscosity (192.25 RVU), Trough value (112.67 RVU), final viscosity (211.92 RVU), but highest in breakdown viscosity (121.61 RVU), peak time (4.66min) pasting temperature (82.35°C), and differed significantly (p <0.05), from other samples. VIIS60 had the medium peak viscosity (236.67 RVU), Trough value (116.58 RVU), Break down viscosity (120:08 RVU), set back viscosity (167.92 RVU), peak time (4.39min), pasting temp (81.44°C) and differed significantly (p <0.05) from other samples. High final viscosity and low set back values of the French variety with soy residue blended at 60 mesh particle size recommends this french variety and fibre composition as optimum for production of instant plantain soy residue flour blend for production of diabetic fufu.
Keywords: Plantain, soy residue pasting properties particle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372319 TheAnalyzer: Clustering-Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human-Computer Interaction
Authors: D. S. A. Nanayakkara, K. J. P. G. Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. TheAnalyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling TheAnalyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.
Keywords: Data clustering, data standardization, dimensionality reduction, human-computer interaction, user profiling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228318 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.
Keywords: Steel plate shear wall, Abacus software, finite element method, boundary element, seismic structural improvement, Von misses Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518317 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044316 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116315 Visualization and Indexing of Spectral Databases
Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi
Abstract:
On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.
Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769314 Integrated Subset Split for Balancing Network Utilization and Quality of Routing
Authors: S. V. Kasmir Raja, P. Herbert Raj
Abstract:
The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.
Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396313 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447312 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776311 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.
Keywords: Bipartite graph, clustering, one-mode projection, web proxy detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746310 Statistics of Exon Lengths in Animals, Plants, Fungi, and Protists
Authors: Alexander Kaplunovsky, Vladimir Khailenko, Alexander Bolshoy, Shara Atambayeva, AnatoliyIvashchenko
Abstract:
Eukaryotic protein-coding genes are interrupted by spliceosomal introns, which are removed from the RNA transcripts before translation into a protein. The exon-intron structures of different eukaryotic species are quite different from each other, and the evolution of such structures raises many questions. We try to address some of these questions using statistical analysis of whole genomes. We go through all the protein-coding genes in a genome and study correlations between the net length of all the exons in a gene, the number of the exons, and the average length of an exon. We also take average values of these features for each chromosome and study correlations between those averages on the chromosomal level. Our data show universal features of exon-intron structures common to animals, plants, and protists (specifically, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Cryptococcus neoformans, Homo sapiens, Mus musculus, Oryza sativa, and Plasmodium falciparum). We have verified linear correlation between the number of exons in a gene and the length of a protein coded by the gene, while the protein length increases in proportion to the number of exons. On the other hand, the average length of an exon always decreases with the number of exons. Finally, chromosome clustering based on average chromosome properties and parameters of linear regression between the number of exons in a gene and the net length of those exons demonstrates that these average chromosome properties are genome-specific features.
Keywords: Comparative genomics, exon-intron structure, eukaryotic clustering, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573309 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil
Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung
Abstract:
The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133308 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study
Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal
Abstract:
In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.
Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711307 The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan
Abstract:
Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from “extensive” to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts’ judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same.
Keywords: Evaluation, green residential building, grey clustering method, group AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827306 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading
Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam
Abstract:
A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.
Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921305 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry
Authors: Zineddine Bouyahiaoui, Rabah Haoui
Abstract:
The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.Keywords: Hypersonic flow, nonequilibrium flow, shock wave, blunt body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926304 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites
Authors: S. Ghanaraja, Subrata Ray, S. K. Nath
Abstract:
Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.
Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475303 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.
Keywords: Airport, hydrodynamics, hydrographs, safe grade elevation, tides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993302 CFD Study for Normal and Rifled Tube with a Convergence Check
Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih
Abstract:
Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.Keywords: Boiler tube, Convergence Check, Normal Tube, Rifled Tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463301 PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks
Authors: A. K. Prajapati
Abstract:
In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.Keywords: Sensor Network, Graph Theory, MSN, Communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464300 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524299 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective
Authors: M. K. Witek-Hajduk, T. M. Napiórkowski
Abstract:
A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.
Keywords: Business model, cooperation, cluster analysis, retailer-manufacturer relationships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121298 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524