Search results for: differential algebraic equations
1395 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach
Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam
Abstract:
Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761394 The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)
Authors: Saleh S. Hamad Elawgali
Abstract:
Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.
Keywords: Current spectrum, diagnostics, harmonics, Induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22971393 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: Fengxia Zheng, Chuanyun Gu
Abstract:
By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841392 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.
Keywords: Magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681391 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition
Abstract:
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591390 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7151389 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses
Abstract:
In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.
Keywords: Almost periodic solution, exponential stability, neural networks, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143331388 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571387 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.
Keywords: Differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26251386 Automatic Translation of Ada-ECATNet Using Rewriting Logic
Authors: N. Boudiaf
Abstract:
One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic and its programming language Maude. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems We proposed previously a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet) and we showed that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets. We showed also previously how the ECATNet formalism offers to Ada many validation and verification tools like simulation, Model Checking, accessibility analysis and static analysis. In this paper, we describe the implementation of our translation of the Ada programs into ECATNets.Keywords: Ada tasking, Analysis, Automatic Translation, ECATNets, Maude, Rewriting Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841385 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Chuanyun Gu, Shouming Zhong
Abstract:
In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.
Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911384 A Capacitive Sensor Interface Circuit Based on Phase Differential Method
Authors: H. A. Majid, N. Razali, M. S. Sulaiman, A. K. A'ain
Abstract:
A new interface circuit for capacitive sensor is presented. This paper presents the design and simulation of soil moisture capacitive sensor interface circuit based on phase differential technique. The circuit has been designed and fabricated using MIMOS- 0.35"m CMOS technology. Simulation and test results show linear characteristic from 36 – 52 degree phase difference, representing 0 – 100% in soil moisture level. Test result shows the circuit has sensitivity of 0.79mV/0.10 phase difference, translating into resolution of 10% soil moisture level.Keywords: Capacitive sensor, interface, phase differential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34221383 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5001382 Contaminant Transport Modeling Due to Thermal Diffusion Effects with the Effect of Biodegradation
Authors: Nirmala P. Ratchagar, S. Senthamilselvi
Abstract:
The heat and mass transfer characteristics of contaminants in groundwater subjected to a biodegradation reaction is analyzed by taking into account the thermal diffusion (Soret) effects. This phenomenon is modulated mathematically by a system of partial differential equations which govern the motion of fluid (groundwater) and solid (contaminants) particles. The numerical results are presented graphically for different values of the parameters entering into the problem on the velocity profiles of fluid, contaminants, temperature and concentration profile.Keywords: Heat and mass transfer, Soret number, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211381 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28961380 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints
Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao
Abstract:
This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.
Keywords: Cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10131379 Reentry Trajectory Optimization Based on Differential Evolution
Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao
Abstract:
Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351378 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35201377 Explicit Feedback Linearization of Magnetic Levitation System
Authors: Bhawna Tandon, Shiv Narayan, Jagdish Kumar
Abstract:
This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.
Keywords: Explicit Algorithm, Feedback Linearization, Nonlinear control, Magnetic Levitation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29761376 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901375 Very-high-Precision Normalized Eigenfunctions for a Class of Schrödinger Type Equations
Authors: Amna Noreen , Kare Olaussen
Abstract:
We demonstrate that it is possible to compute wave function normalization constants for a class of Schr¨odinger type equations by an algorithm which scales linearly (in the number of eigenfunction evaluations) with the desired precision P in decimals.
Keywords: Eigenvalue problems, bound states, trapezoidal rule, poisson resummation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28551374 Laplace Decomposition Approximation Solution for a System of Multi-Pantograph Equations
Authors: M. A. Koroma, C. Zhan, A. F. Kamara, A. B. Sesay
Abstract:
In this work we adopt a combination of Laplace transform and the decomposition method to find numerical solutions of a system of multi-pantograph equations. The procedure leads to a rapid convergence of the series to the exact solution after computing a few terms. The effectiveness of the method is demonstrated in some examples by obtaining the exact solution and in others by computing the absolute error which decreases as the number of terms of the series increases.
Keywords: Laplace decomposition, pantograph equations, exact solution, numerical solution, approximate solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501373 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems
Authors: Nhon Do, Hien Nguyen
Abstract:
Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711372 Fluid Differential Agitators
Authors: Saeed Asiri
Abstract:
This research is to design and implement a new kind of agitators called differential agitator. The Differential Agitator is an electro- mechanic set consists of two shafts. The first shaft is the bearing axis while the second shaft is the axis of the quartet upper bearing impellers group and the triple lower group which are called as agitating group. The agitating group is located inside a cylindrical container equipped especially to contain square directors for the liquid entrance and square directors called fixing group for the liquid exit. The fixing group is installed containing the agitating group inside any tank whether from upper or lower position. The agitating process occurs through the agitating group bearing causing a lower pressure over the upper group leading to withdrawing the liquid from the square directors of the liquid entering and consequently the liquid moves to the denser place under the quartet upper group. Then, the liquid moves to the so high pressure area under the agitating group causing the liquid to exit from the square directors in the bottom of the container. For improving efficiency, parametric study and shape optimization has been carried out. A numerical analysis, manufacturing and laboratory experiments were conducted to design and implement the differential agitator. Knowing the material prosperities and the loading conditions, the FEM using ANSYS11 was used to get the optimum design of the geometrical parameters of the differential agitator elements while the experimental test was performed to validate the advantages of the differential agitators to give a high agitation performance of lime in the water as an example. In addition, the experimental work has been done to express the internal container shape in the agitation efficiency. The study ended up with conclusions to maximize agitator performance and optimize the geometrical parameters to be used for manufacturing the differential agitatorKeywords: Differential Agitators, Parametric Optimization, Shape Optimization, Agitation, FEM, ANSYS11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37091371 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping
Authors: Da-Xue Chen, Guang-Hui Liu
Abstract:
In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.
Keywords: Oscillation theorem, second-order nonlinear neutral dynamic equation, variable delay, damping, Riccati transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641370 A Study on Stochastic Integral Associated with Catastrophes
Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan
Abstract:
We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).
Keywords: Stochastic integrals, single–server queue model, catastrophes, busy period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001369 Univalence of an Integral Operator Defined by Generalized Operators
Authors: Salma Faraj Ramadan, Maslina Darus
Abstract:
In this paper we define generalized differential operators from some well-known operators on the class A of analytic functions in the unit disk U = {z ∈ C : |z| < 1}. New classes containing these operators are investigated. Also univalence of integral operator is considered.
Keywords: Univalent functions, integral operators, differential operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12631368 Modeling Approaches for Large-Scale Reconfigurable Engineering Systems
Authors: Kwa-Sur Tam
Abstract:
This paper reviews various approaches that have been used for the modeling and simulation of large-scale engineering systems and determines their appropriateness in the development of a RICS modeling and simulation tool. Bond graphs, linear graphs, block diagrams, differential and difference equations, modeling languages, cellular automata and agents are reviewed. This tool should be based on linear graph representation and supports symbolic programming, functional programming, the development of noncausal models and the incorporation of decentralized approaches.Keywords: Interdisciplinary, dynamic, functional programming, object-oriented.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951367 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB
Authors: Deepak Kumar, Vivek Kumar, V. P. Singh
Abstract:
This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32591366 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710