Search results for: Visual search
980 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini
Abstract:
Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256979 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.
Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905978 Single-Camera EKF-vSLAM
Authors: ML. Benmessaoud, A. Lamrani, K. Nemra, AK. Souici
Abstract:
This paper presents an Extended Kaman Filter implementation of a single-camera Visual Simultaneous Localization and Mapping algorithm, a novel algorithm for simultaneous localization and mapping problem widely studied in mobile robotics field. The algorithm is vision and odometry-based, The odometry data is incremental, and therefore it will accumulate error over time, since the robot may slip or may be lifted, consequently if the odometry is used alone we can not accurately estimate the robot position, in this paper we show that a combination of odometry and visual landmark via the extended Kalman filter can improve the robot position estimate. We use a Pioneer II robot and motorized pan tilt camera models to implement the algorithm.Keywords: Mobile Robot, Navigation, vSLAM, EKF, monocular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681977 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator
Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem
Abstract:
Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.
Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894976 A Metametadata Architecture forPedagogic Data Description
Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah
Abstract:
This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.Keywords: Metadata, metametadata, semantic, ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514975 Creative Art Practice in Response to Climate Change: How Art Transforms and Frames New Approaches to Speculative Ecological and Sustainable Futures
Authors: Wenwen Liu, Robert Burton, Simon McKeown
Abstract:
Climate change is seriously threatening human security and development, leading to global warming and economic, political, and social chaos. Many artists have created visual responses that challenge perceptions on climate change, actively guiding people to think about the climate issues and potential crises after urban industrialization and explore positive solutions. This project is an interdisciplinary and intertextual study where art practice is informed by culture, philosophy, psychology, ecology, and science. By correlating theory and artistic practice, it studies how art practice creates a visual way of understanding climate issues and uses art as a way of exploring speculative futures. In the context of practical-based research, arts-based practice as research and creative practice as interdisciplinary research are applied alternately to seek the original solution and new knowledge. Through creative art practice, this project has established visual ways of looking at climate change and has developed it into a model to generate more possibilities, an alternative social imagination. It not only encourages people to think and find a sustainable speculative future conducive to all species but also proves that people have the ability to realize positive futures.
Keywords: Climate change, creative practice as interdisciplinary research, arts-based practice as research, creative art practice, speculative future.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631974 Collaboration of Multi-Agent and Hyper-Heuristics Systems for Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper introduces a framework based on the collaboration of multi agent and hyper-heuristics to find a solution of the real single machine production problem. There are many techniques used to solve this problem. Each of it has its own advantages and disadvantages. By the collaboration of multi agent system and hyper-heuristics, we can get more optimal solution. The hyper-heuristics approach operates on a search space of heuristics rather than directly on a search space of solutions. The proposed framework consists of some agents, i.e. problem agent, trainer agent, algorithm agent (GPHH, GAHH, and SAHH), optimizer agent, and solver agent. Some low level heuristics used in this paper are MRT, SPT, LPT, EDD, LDD, and MON
Keywords: Hyper-heuristics, multi-agent systems, scheduling problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153973 Color and Layout-based Identification of Documents Captured from Handheld Devices
Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold
Abstract:
This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.Keywords: Document color modeling, document visualsignature, kernel density estimation, document identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570972 Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule
Authors: P. Jomsri
Abstract:
Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.
Keywords: association rule, information retrieval, research paper bookmarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444971 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques
Authors: H. Elbehiery, A. Hefnawy, M. Elewa
Abstract:
Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.
Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6638970 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957969 Non-Destructive Visual-Statistical Approach to Detect Leaks in Water Mains
Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi
Abstract:
In this paper, an effective non-destructive, noninvasive approach for leak detection was proposed. The process relies on analyzing thermal images collected by an IR viewer device that captures thermo-grams. In this study a statistical analysis of the collected thermal images of the ground surface along the expected leak location followed by a visual inspection of the thermo-grams was performed in order to locate the leak. In order to verify the applicability of the proposed approach the predicted leak location from the developed approach was compared with the real leak location. The results showed that the expected leak location was successfully identified with an accuracy of more than 95%.
Keywords: Thermography, Leakage, Water pipelines, Thermograms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528968 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Authors: D. Naga Ravi Kiran, C. G. Dethe
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027967 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792966 Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment
Authors: K. K. Saju, A. R. Reghuraj
Abstract:
High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance.Keywords: Conversion coatings, 410 stainless steel, black oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287965 Optimized Algorithm for Particle Swarm Optimization
Authors: Fuzhang Zhao
Abstract:
Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868964 Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies
Authors: Jayme G. A. Barbedo, Amauri Lopes
Abstract:
This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals.
Keywords: Closely spaced sinusoids, high-resolution parameter estimation, optimized grid search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2872963 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF
Authors: Karunakar A K, Manohara Pai M M
Abstract:
In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619962 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma
Authors: Naoto Suzuki
Abstract:
Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.
Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547961 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619960 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002959 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles
Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin
Abstract:
A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588958 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076957 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182956 Quantitative Quality Assessment of Microscopic Image Mosaicing
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
The mosaicing technique has been employed in more and more application fields, from entertainment to scientific ones. In the latter case, often the final evaluation is still left to human beings, that assess visually the quality of the mosaic. Many times, a lack of objective measurements in microscopic mosaicing may prevent the mosaic from being used as a starting image for further analysis. In this work we analyze three different metrics and indexes, in the domain of signal analysis, image analysis and visual quality, to measure the quality of different aspects of the mosaicing procedure, such as registration errors and visual quality. As the case study we consider the mosaicing algorithm we developed. The experiments have been carried out by considering mosaics with very different features: histological samples, that are made of detailed and contrasted images, and live stem cells, that show a very low contrast and low detail levels.
Keywords: Mosaicing, quality assessment, microscopy, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249955 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920954 Autonomous Virtual Agent Navigation in Virtual Environments
Authors: Jafreezal Jaafar, Eric McKenzie
Abstract:
This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.Keywords: Agent, Navigation, Demster Shafer, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627953 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akın, İbrahim Aydoğdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450952 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901951 Balancing Strategies for Parallel Content-based Data Retrieval Algorithms in a k-tree Structured Database
Authors: Radu Dobrescu, Matei Dobrescu, Daniela Hossu
Abstract:
The paper proposes a unified model for multimedia data retrieval which includes data representatives, content representatives, index structure, and search algorithms. The multimedia data are defined as k-dimensional signals indexed in a multidimensional k-tree structure. The benefits of using the k-tree unified model were demonstrated by running the data retrieval application on a six networked nodes test bed cluster. The tests were performed with two retrieval algorithms, one that allows parallel searching using a single feature, the second that performs a weighted cascade search for multiple features querying. The experiments show a significant reduction of retrieval time while maintaining the quality of results.
Keywords: balancing strategies, multimedia databases, parallelprocessing, retrieval algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424