Search results for: Occupational Training
708 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838707 The Dilemma of Retention in the Context of Rapidly Growing Economies Based on the Effectiveness of HRM Policies: A Case Study of Qatar
Authors: A. Qayed Al-Emadi, C. Schwabenland, B. Czarnecka
Abstract:
In 2009, the new HRM policy was implemented in Qatar for public sector organisations. The purpose of this research is to examine how Qatar’s 2009 HRM policy was significant in influencing employee retention in public organisations. The conducted study utilised quantitative methodology to analyse the data on employees’ perceptions of such HRM practices as Performance Management, Rewards and Promotion, Training and Development associated with the HRM policy in public organisations in comparison to semi-private organisations. Employees of seven public and semi-private organisations filled in the questionnaire based on the 5-point Likert scale to present quantitative results. The data was analysed with the correlation and multiple regression statistical analyses. It was found that Performance Management had the relationship with Employee Retention, and Rewards and Promotion influenced Job Satisfaction in public organisations. Relationship between Job Satisfaction and Employee Retention was also observed. However, no significant differences were observed in the role of HRM practices in public and semi-private organisations.Keywords: Performance management, rewards, promotion, training and development, job satisfaction, employee retention, SHRM, configurationally perspective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708706 Gender based Barriers to Effective Collaboration: A Case Study on Children's Safeguard Partnerships
Authors: L. McAllister, A. Dudau
Abstract:
This paper explores gender related barriers to interagency collaboration in statutory children safeguard partnerships against a theoretical framework that considers individuals, professions and organisations interacting as part of a complex adaptive system. We argue that gender-framed obstacles to effective communication between culturally discrepant agencies can ultimately impact on the effectiveness of policy delivery,. We focused our research on three partnership structures in Sefton Metropolitan Borough in order to observe how interactions occur, whether the agencies involved perceive their occupational environment as being gender affected and whether they believe this can hinder effective collaboration with other biased organisations. Our principal empirical findings indicate that there is a general awareness amongst professionals of the role that gender plays in each of the agencies reviewed, that gender may well constitute a barrier to effective communication, but there is a sense in which there is little scope for change in the short term. We aim to signal here, however, the need to change against the risk of service failure.
Keywords: Children's safeguard, gender, gendered professions, inter-agency collaboration, partnerships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004705 An Angioplasty Intervention Simulator with a Specific Virtual Environment
Authors: G. Aloisio, L. T. De Paolis, A. De Mauro, A. Mongelli
Abstract:
One of the essential requirements of a realistic surgical simulator is to reproduce haptic sensations due to the interactions in the virtual environment. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the immersion sensation. In this paper, a prototype of a coronary stent implant simulator is present; this system allows real-time interactions with an artery by means of a specific haptic device. To improve the realism of the simulation, the building of the virtual environment is based on real patients- images and a Web Portal is used to search in the geographically remote medical centres a virtual environment with specific features in terms of pathology or anatomy. The functional architecture of the system defines several Medical Centres in which virtual environments built from the real patients- images and related metadata with specific features in terms of pathology or anatomy are stored. The searched data are downloaded from the Medical Centre to the Training Centre provided with a specific haptic device and with the software necessary both to manage the interaction in the virtual environment. After the integration of the virtual environment in the simulation system it is possible to perform training on the specific surgical procedure.Keywords: Medical Simulation, Web Portal, Virtual Reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797704 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406703 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding
Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton
Abstract:
A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.
Keywords: USA commercial pilots, crew resource management, faking, social desirability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934702 Effect of Vibration Intervention on Leg-press Exercise
Authors: Youngkuen Cho, Seonhong Hwang, Jinyoung Min, Youngho Kim, Dohyung Lim, Hansung Kim
Abstract:
Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.Keywords: Resistive exercise, leg-press exercise, muscle strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887701 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application
Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze
Abstract:
Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644700 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224699 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector
Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald
Abstract:
The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.
Keywords: Education and training, knowledge sharing, online resources, water and sanitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683698 Interdisciplinarity: A Pedagogical Practice in the Classrooms
Abstract:
The world is changing and, consequently, the young people need to acquire more sophisticated tools and skills to lead with the new societies’ challenges. In the curriculum of the Portuguese education system, in the profile of students leaving compulsory education, the critical thinking and creative thinking are pointed out as skills to be developed, as well as the capacity of interconnect different knowledge and applicate them in different contexts and learning areas. Unlike primary school teachers, teachers specialized in a specific area sometimes reveal more difficulties in developing interdisciplinary approaches in the classrooms and, despite the effort, the interdisciplinarity is not a common practice in schools. Statements like "Mathematics is everywhere" are unquestionable, however, some math teachers continue to develop an abstract teaching of mathematics devoid of any connection with reality. Good mathematical problems in real contexts are promising in the development of interdisciplinary pedagogical practices. However, these problems are often addressed by teachers in multidisciplinary rather than interdisciplinary contexts or are not addressed at all due several reasons, which range from insecurity in working on disciplinary domains with which they are not comfortable to a lack of pedagogical resources. In this study this issue is approached through a case study involving Mathematics teachers, which, in their professional development scope, attended a training aimed at stimulating interdisciplinary practices in real contexts, namely related to the COVID-19 pandemic.
Keywords: Interdisciplinarity, Mathematics, professional development, teacher training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152697 Risk Factors in a Road Construction Site
Authors: V.R Gannapathy, S.K Subramaniam, A.B Mohamad Diah, M.K Suaidi, A.H Hamidon
Abstract:
The picture of a perfect road construction site is the one that utilizes conventional vertical road signs and a flagman to optimize the traffic flow with minimum hazel to the public. Former research has been carried out by Department of Occupational Safety and Health (DOSH) and Ministry of Works to further enhance smoothness in traffic operations and particularly in safety issues within work zones. This paper highlights on hazardous zones in a certain road construction or road maintenance site. Most cases show that the flagman falls into high risk of fatal accidents within work zone. Various measures have been taken by both the authorities and contractors to overcome such miseries, yet it-s impossible to eliminate the usage of a flagman since it is considered the best practice. With the implementation of new technologies in automating the traffic flow in road construction site, it is possible to eliminate the usage of a flagman. The intelligent traffic light system is designed to solve problems which contribute hazardous at road construction site and to be inline with the road safety regulation which is taken into granted.
Keywords: Intelligent Traffic Light, Critical Zones, Safety Regulation, Flagman
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6364696 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources
Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño
Abstract:
This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.Keywords: Educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943695 Indigenous Knowledge and Nature of Science Interface: Content Considerations for Science, Technology, Engineering, and Mathematics Education
Authors: Mpofu Vongai, Vhurumuku Elaosi
Abstract:
Many African countries, such as Zimbabwe and South Africa, have curricula reform agendas that include incorporation of Indigenous Knowledge and Nature of Science (NOS) into school Science, Technology, Engineering and Mathematics (STEM) education. It is argued that at high school level, STEM learning, which incorporates understandings of indigenization science and NOS, has the potential to provide a strong foundation for a culturally embedded scientific knowledge essential for their advancement in Science and Technology. Globally, investment in STEM education is recognized as essential for economic development. For this reason, developing countries such as Zimbabwe and South Africa have been investing into training specialized teachers in natural sciences and technology. However, in many cases this training has been detached from the cultural realities and contexts of indigenous learners. For this reason, the STEM curricula reform has provided implementation challenges to teachers. An issue of major concern is the teachers’ pedagogical content knowledge (PCK), which is essential for effective implementation of these STEM curricula. Well-developed Teacher PCK include an understanding of both the nature of indigenous knowledge (NOIK) and of NOS. This paper reports the results of a study that investigated the development of 3 South African and 3 Zimbabwean in-service teachers’ abilities to integrate NOS and NOIK as part of their PCK. A participatory action research design was utilized. The main focus was on capturing, determining and developing teachers STEM knowledge for integrating NOIK and NOS in science classrooms. Their use of indigenous games was used to determine how their subject knowledge for STEM and pedagogical abilities could be developed. Qualitative data were gathered through the use dialogues between the researchers and the in-service teachers, as well as interviewing the participating teachers. Analysis of the data provides a methodological window through which in-service teachers’ PCK can be STEMITIZED and their abilities to integrate NOS and NOIK developed. Implications are raised for developing teachers’ STEM education in universities and teacher training colleges.
Keywords: Indigenous knowledge, nature of science, pedagogical content knowledge, STEM education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260694 Multichannel Scheme under Max-Min Fairness Environment for Cognitive Radio Networks
Authors: Hans R. Márquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper develops a multiple channel assignment model, which allows to take advantage of spectrum opportunities in cognitive radio networks in the most efficient way. The developed scheme allows making several assignments of available and frequency adjacent channel, which require a bigger bandwidth, under an equality environment. The hybrid assignment model it is made by two algorithms, one that makes the ranking and selects available frequency channels and the other one in charge of establishing the Max-Min Fairness for not restrict the spectrum opportunities for all the other secondary users, who also claim to make transmissions. Measurements made were done for average bandwidth, average delay, as well as fairness computation for several channel assignments. Reached results were evaluated with experimental spectrum occupational data from captured GSM frequency band. The developed model shows evidence of improvement in spectrum opportunity use and a wider average transmission bandwidth for each secondary user, maintaining equality criteria in channel assignment.Keywords: Bandwidth, fairness, multichannel, secondary users.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763693 Developing the Personal, Dissolving the Political
Authors: James Moir
Abstract:
The emergence of person-centred discourse based around notions of 'personal development planning- and 'work'life balance' has taken hold in education and the workplace in recent years. This paper examines this discourse with regard to recent developments in higher education as well as the inter-related issue of work-life balance in occupational careers. In both cases there have been national and trans-national policy initiatives directed towards improving both personal opportunities and competitive advantage in a global knowledge-based economy. However, despite an increasing concern with looking outward at this globalised educational and employment marketplace, there is something of a paradox in encouraging people to look inward at themselves in order to become more self-determined. This apparent paradox is considered from a discourse analytic perspective in terms of the ideological effects of an increasing concern with the personal world. Specifically, it is argued that there are tensions that emerge from a concern with an innerdirected process of self-reflection that dissolve any engagement with wider political issues that impact upon educational and career development.Keywords: Personal development planning, higher education, work-life balance, career.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401692 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539691 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745690 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform
Authors: Stamatios A. Theocharis, George A. Tsihrintzis
Abstract:
One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.
To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.
Keywords: e-Government, civil employees education, education technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938689 Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students
Authors: N. Ipiña, R. Basagoiti, O. Jimenez, I. Arriaran
Abstract:
Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.
Keywords: Higher education, perceptions, recommendations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233688 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion
Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud
Abstract:
The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.
Keywords: Lifting capabilities, muscle activities (sEMG), oxygen content, perceived exertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644687 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329686 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313685 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That Are Based on Level(s)
Authors: Sabina Jordan, Miha Tomšič, Friderik Knez, Marjana Šijanec Zavrl
Abstract:
To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.
Keywords: Sustainability, building indicator, project CARE4CLIMATE, alpha version SLO kTG, Level(s), sustainable construction stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200684 Student Attitude towards Entrepreneurship: A South African and Dutch Comparison
Authors: Natanya Meyer, Johann Landsberg
Abstract:
Unemployment among the youth is a significant problem in South Africa. Large corporations and the public sector simply cannot create enough jobs. Too many youths in South Africa currently do not consider entrepreneurship as an option in order to become independent. Unlike the youth of the Netherlands, South African youth prefer to find employment in the public or private sector. The Netherlands has a much lower unemployment rate than South Africa and the Dutch are generally very entrepreneurial. From early on, entrepreneurship is considered a desirable career option in the Netherlands. The purpose of this study was to determine whether there is a difference in the perceptions of some Dutch and South African students in terms of unemployment and entrepreneurship. Questionnaires were distributed to students at the North West University's Vaal Triangle campus in Vanderbijlpark in Gauteng, South Africa and the Technical University of Delft in the Netherlands. A descriptive statistical analysis approach was followed and the means for the independent questions were calculated. The results demonstrate that the Dutch students are not as concerned about unemployment after completion of their studies as this is not as significant a problem as it is in South Africa. Both groups had positive responses towards the posed questions, but the South African group felt more strongly about the issues. Both groups of students felt that there was a need for more practical entrepreneurship training. The South African education system should focus on practical entrepreneurship training from a young age.Keywords: Entrepreneurship development, entrepreneurship development programmes, entrepreneurship intention, Netherlands, South Africa, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925683 Exploring Perceptions and Practices About Information and Communication Technologies in Business English Teaching in Pakistan
Authors: M. Athar Hussain, N.B. Jumani, Munazza Sultana., M. Zafar Iqbal
Abstract:
Language Reforms and potential use of ICTs has been a focal area of Higher Education Commission of Pakistan. Efforts are being accelerated to incorporate fast expanding ICTs to bring qualitative improvement in language instruction in higher education. This paper explores how university teachers are benefitting from ICTs to make their English class effective and what type of problems they face in practicing ICTs during their lectures. An in-depth qualitative study was employed to understand why language teachers tend to use ICTs in their instruction and how they are practicing it. A sample of twenty teachers from five universities located in Islamabad, three from public sector and two from private sector, was selected on non-random (Snowball) sampling basis. An interview with 15 semi-structured items was used as research instruments to collect data. The findings reveal that business English teaching is facilitated and improved through the use of ICTs. The language teachers need special training regarding the practices and implementation of ICTs. It is recommended that initiatives might be taken to equip university language teachers with modern methodology incorporating ICTs as focal area and efforts might be made to remove barriers regarding the training of language teachers and proper usage of ICTs.
Keywords: Information and communication technologies, internet assisted learning, teaching business English, online instructional content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947682 Quality Service Standard of Food and Beverage Service Staff in Hotel
Authors: Thanasit Suksutdhi
Abstract:
This survey research aims to study the standard of service quality of food and beverage service staffs in hotel business by studying the service standard of three sample hotels, Siam Kempinski Hotel Bangkok, Four Seasons Resort Chiang Mai, and Banyan Tree Phuket. In order to find the international service standard of food and beverage service, triangular research, i.e. quantitative, qualitative, and survey were employed. In this research, questionnaires and in-depth interview were used for getting the information on the sequences and method of services. There were three parts of modified questionnaires to measure service quality and guest’s satisfaction including service facilities, attentiveness, responsibility, reliability, and circumspection. This study used sample random sampling to derive subjects with the return rate of the questionnaires was 70% or 280. Data were analyzed by SPSS to find arithmetic mean, SD, percentage, and comparison by t-test and One-way ANOVA. The results revealed that the service quality of the three hotels were in the international level which could create high satisfaction to the international customers. Recommendations for research implementations were to maintain the area of good service quality, and to improve some dimensions of service quality such as reliability. Training in service standard, product knowledge, and new technology for employees should be provided. Furthermore, in order to develop the service quality of the industry, training collaboration between hotel organization and educational institutions in food and beverage service should be considered.
Keywords: Service standard, food and beverage department, sequence of service, service method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7803681 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: Stacking, multi-layers, ensemble, multi-class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093680 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural Language Processing (NLP) in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.
Keywords: BERT, financial markets, Twitter, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716679 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.
Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973