Search results for: Fuzzy multi-objective optimization problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5562

Search results for: Fuzzy multi-objective optimization problem

5232 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi

Abstract:

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
5231 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
5230 Fuzzy Voting in Internal Elections of Educational and Party Organizations

Authors: R. Hosseingholizadeh

Abstract:

This article presents a method for elections between the members of a group that is founded by fuzzy logic. Linguistic variables are objects for decision on election cards and deduction is based on t-norms and s-norms. In this election-s method election cards are questionnaire. The questionnaires are comprised of some questions with some choices. The choices are words from natural language. Presented method is accompanied by center of gravity (COG) defuzzification added up to a computer program by MATLAB. Finally the method is illustrated by solving two examples; choose a head for a research group-s members and a representative for students.

Keywords: fuzzy election, fuzzy electoral card, fuzzy inference, questionnaire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
5229 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
5228 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks

Authors: Tarek M. Mahmoud

Abstract:

Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.

Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
5227 Application of Ant Colony Optimization for Multi-objective Production Problems

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.

Keywords: Ant colony optimization, multi-objective problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
5226 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
5225 A New Quantile Based Fuzzy Time Series Forecasting Model

Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil

Abstract:

Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.

Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
5224 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687
5223 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
5222 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
5221 Generation Scheduling Optimization of Multi-Hydroplants: A Case Study

Authors: Shuangquan Liu, Jinwen Wang, Dada Wang

Abstract:

A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.

Keywords: generation scheduling, multi-hydroplants, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
5220 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
5219 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: Tangent line, fractional dimension, root, optimization problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
5218 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images

Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge

Abstract:

Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.

Keywords: Band selection, fuzzy C-means, K-means, hyperspectral image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
5217 Evaluation of Electronic Payment Systems Using Fuzzy Multi-Criteria Decision Making Approach

Authors: Gülfem Alptekin, S. Emre Alptekin

Abstract:

Global competitiveness has recently become the biggest concern of both manufacturing and service companies. Electronic commerce, as a key technology enables the firms to reach all the potential consumers from all over the world. In this study, we have presented commonly used electronic payment systems, and then we have shown the evaluation of these systems in respect to different criteria. The payment systems which are included in this research are the credit card, the virtual credit card, the electronic money, the mobile payment, the credit transfer and the debit instruments. We have realized a systematic comparison of these systems in respect to three main criteria: Technical, economical and social. We have conducted a fuzzy multi-criteria decision making procedure to deal with the multi-attribute nature of the problem. The subjectiveness and imprecision of the evaluation process are modeled using triangular fuzzy numbers.

Keywords: Electronic payment systems, fuzzy multi-criteriadecision making, analytical hierarchy process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
5216 Multilevel Fuzzy Decision Support Model for China-s Urban Rail Transit Planning Schemes

Authors: Jin-Bao Zhao, Wei Deng

Abstract:

This paper aims at developing a multilevel fuzzy decision support model for urban rail transit planning schemes in China under the background that China is presently experiencing an unprecedented construction of urban rail transit. In this study, an appropriate model using multilevel fuzzy comprehensive evaluation method is developed. In the decision process, the followings are considered as the influential objectives: traveler attraction, environment protection, project feasibility and operation. In addition, consistent matrix analysis method is used to determine the weights between objectives and the weights between the objectives- sub-indictors, which reduces the work caused by repeated establishment of the decision matrix on the basis of ensuring the consistency of decision matrix. The application results show that multilevel fuzzy decision model can perfectly deal with the multivariable and multilevel decision process, which is particularly useful in the resolution of multilevel decision-making problem of urban rail transit planning schemes.

Keywords: Urban rail transit, planning schemes, multilevel fuzzy decision support model, consistent matrix analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
5215 Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers

Authors: S. H. Nasseri, E. Ardil, A. Yazdani, R. Zaefarian

Abstract:

The fuzzy set theory has been applied in many fields, such as operations research, control theory, and management sciences, etc. In particular, an application of this theory in decision making problems is linear programming problems with fuzzy numbers. In this study, we present a new method for solving fuzzy number linear programming problems, by use of linear ranking function. In fact, our method is similar to simplex method that was used for solving linear programming problems in crisp environment before.

Keywords: Fuzzy number linear programming, rankingfunction, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3528
5214 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
5213 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
5212 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

Authors: A. M. El-Zonkoly

Abstract:

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
5211 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
5210 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic

Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad

Abstract:

This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.

Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3473
5209 Optimization Approaches for a Complex Dairy Farm Simulation Model

Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu

Abstract:

This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.

Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
5208 Fuzzy Logic PID Control of Automatic Voltage Regulator System

Authors: Aye Aye Mon

Abstract:

The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Keywords: Fuzzy logic system, PID Controller, control systems, controlled A V R

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
5207 Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M.B.K. Moorthy

Abstract:

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords: Fuzzy best co-approximation, fuzzy quotient spaces, proximinality, Chebyshevity, best simultaneous co-approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
5206 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
5205 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

Authors: Gaurav Kumar, Rakesh Kumar Bajaj

Abstract:

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
5204 Processing Web-Cam Images by a Neuro-Fuzzy Approach for Vehicular Traffic Monitoring

Authors: A. Faro, D. Giordano, C. Spampinato

Abstract:

Traffic management in an urban area is highly facilitated by the knowledge of the traffic conditions in every street or highway involved in the vehicular mobility system. Aim of the paper is to propose a neuro-fuzzy approach able to compute the main parameters of a traffic system, i.e., car density, velocity and flow, by using the images collected by the web-cams located at the crossroads of the traffic network. The performances of this approach encourage its application when the traffic system is far from the saturation. A fuzzy model is also outlined to evaluate when it is suitable to use more accurate, even if more time consuming, algorithms for measuring traffic conditions near to saturation.

Keywords: Neuro-fuzzy networks, computer vision, Fuzzy systems, intelligent transportation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
5203 Solving the Economic Dispatch Problem by Using Differential Evolution

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691