Search results for: images processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2510

Search results for: images processing

2210 Ontologies for Complex Event Processing

Authors: Irina Astrova, Arne Koschel, Jan Lukanowski, Jose Luis Munoz Martinez, Valerij Procenko, Marc Schaaf

Abstract:

In this paper, five ontologies are described, which include the event concepts. The paper provides an overview and comparison of existing event models. The main criteria for comparison are that there should be possibilities to model events with stretch in the time and location and participation of objects; however, there are other factors that should be taken into account as well. The paper also shows an example of using ontologies in complex event processing.

Keywords: Ontologies, events, complex event processing (CEP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
2209 Study of Natural Patterns on Digital Image Correlation Using Simulation Method

Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish

Abstract:

Digital image correlation (DIC) is a contactless fullfield displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.

Keywords: Digital image correlation (DIC), Deformation simulation, Natural pattern, Subset size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
2208 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: Document processing, framework, formal definition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
2207 LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation

Authors: Arjun Jain, Himanshu Agrawal, Nalini Vasudevan

Abstract:

In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.

Keywords: PC cluster, parallel computations, ray tracing, persistence of vision, rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
2206 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

Authors: Hamid A. Jalab, Rabha W. Ibrahim

Abstract:

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
2205 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2204 Automated Feature Points Management for Video Mosaic Construction

Authors: Jing Li, Quan Pan, Stan. Z. Li, Tao Yang

Abstract:

A novel algorithm for construct a seamless video mosaic of the entire panorama continuously by automatically analyzing and managing feature points, including management of quantity and quality, from the sequence is presented. Since a video contains significant redundancy, so that not all consecutive video images are required to create a mosaic. Only some key images need to be selected. Meanwhile, feature-based methods for mosaicing rely on correction of feature points? correspondence deeply, and if the key images have large frame interval, the mosaic will often be interrupted by the scarcity of corresponding feature points. A unique character of the method is its ability to handle all the problems above in video mosaicing. Experiments have been performed under various conditions, the results show that our method could achieve fast and accurate video mosaic construction. Keywords?video mosaic, feature points management, homography estimation.

Keywords: Video mosaic, feature points management, homography estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
2203 RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images

Authors: Simon L. Madsen, Mads Dyrmann, Morten S. Laursen, Rasmus N. Jørgensen

Abstract:

Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.

Keywords: Weed mapping, integrated weed management, DJI SDK, automation, cotyledon plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
2202 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
2201 Goal Based Episodic Processing in Implicit Learning

Authors: Peter A. Bibby

Abstract:

Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.

Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
2200 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: Cloud storage, decision trees, diagnostic image, search, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
2199 Efficient HAAR Wavelet Transform with Embedded Zerotrees of Wavelet Compression for Color Images

Authors: S. Piramu Kailasam

Abstract:

This study is expected to compress true color image with compression algorithms in color spaces to provide high compression rates. The need of high compression ratio is to improve storage space. Alternative aim is to rank compression algorithms in a suitable color space. The dataset is sequence of true color images with size 128 x 128. HAAR Wavelet is one of the famous wavelet transforms, has great potential and maintains image quality of color images. HAAR wavelet Transform using Set Partitioning in Hierarchical Trees (SPIHT) algorithm with different color spaces framework is applied to compress sequence of images with angles. Embedded Zerotrees of Wavelet (EZW) is a powerful standard method to sequence data. Hence the proposed compression frame work of HAAR wavelet, xyz color space, morphological gradient and applied image with EZW compression, obtained improvement to other methods, in terms of Compression Ratio, Mean Square Error, Peak Signal Noise Ratio and Bits Per Pixel quality measures.

Keywords: Color Spaces, HAAR Wavelet, Morphological Gradient, Embedded Zerotrees Wavelet Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
2198 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
2197 A Lossless Watermarking Based Authentication System For Medical Images

Authors: Samia Boucherkha, Mohamed Benmohamed

Abstract:

In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.

Keywords: Medical Imaging, Invertible Watermarking, Authentication, Integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
2196 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
2195 Natural Flickering of Methane Diffusion Flames

Authors: K. R. V. Manikantachari, Vasudevan Raghavan, K. Srinivasan

Abstract:

Present study focuses on studying the oscillatory behavior of jet diffusion flames. At a particular jet exit velocity, the flames are seen to exhibit natural flickering. Initially the flickering process is not continuous. In this transition region as well as in the continuous flickering regime, the flickering displays multiple frequency oscillations. The response of the flame to the exit velocity profile of the burner is also studied using three types of burners. The entire range of natural flickering is investigated by capturing high speed digital images and processing them using a MATLAB code.

Keywords: Diffusion flames, Natural flickering, flickering frequency, intermittent flickering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
2194 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
2193 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
2192 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
2191 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2190 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
2189 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels

Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad

Abstract:

The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.

Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
2188 An Improved Preprocessing for Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

An improved processing description to be employed in biosonar signal processing in a cochlea model is proposed and examined. It is compared to conventional models using a modified discrimination analysis and both are tested. Their performances are evaluated with echo data captured from natural targets (trees).Results indicate that the phase characteristics of low-pass filters employed in the echo processing have a significant effect on class separability for this data.

Keywords: Cochlea model, discriminant analysis, neurospikecoding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2187 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
2186 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
2185 Specialization-based parallel Processing without Memo-trees

Authors: Hidemi Ogasawara, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

The purpose of this paper is to propose a framework for constructing correct parallel processing programs based on Equivalent Transformation Framework (ETF). ETF regards computation as In the framework, a problem-s domain knowledge and a query are described in definite clauses, and computation is regarded as transformation of the definite clauses. Its meaning is defined by a model of the set of definite clauses, and the transformation rules generated must preserve meaning. We have proposed a parallel processing method based on “specialization", a part of operation in the transformations, which resembles substitution in logic programming. The method requires “Memo-tree", a history of specialization to maintain correctness. In this paper we proposes the new method for the specialization-base parallel processing without Memo-tree.

Keywords: Parallel processing, Program correctness, Equivalent transformation, Specializer generation rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
2184 Support Vector Machine Approach for Classification of Cancerous Prostate Regions

Authors: Metehan Makinacı

Abstract:

The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.

Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
2183 Danger Theory and Intelligent Data Processing

Authors: Anjum Iqbal, Mohd Aizaini Maarof

Abstract:

Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.

Keywords: artificial immune system, danger theory, intelligent processing, system calls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
2182 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2181 Fast Depth Estimation with Filters

Authors: Yiming Nie, Tao Wu, Xiangjing An, Hangen He

Abstract:

Fast depth estimation from binocular vision is often desired for autonomous vehicles, but, most algorithms could not easily be put into practice because of the much time cost. We present an image-processing technique that can fast estimate depth image from binocular vision images. By finding out the lines which present the best matched area in the disparity space image, the depth can be estimated. When detecting these lines, an edge-emphasizing filter is used. The final depth estimation will be presented after the smooth filter. Our method is a compromise between local methods and global optimization.

Keywords: Depth estimation, image filters, stereo match.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250