Search results for: discrete choice models
283 Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles
Authors: Fathollah Ommi, Golnaz Pourabedin, Koros Nekofa
Abstract:
In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.Keywords: Drive cycle, Energy efficiency, energy consumption, Fuel cell system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685282 Microscopic Simulation of Toll Plaza Safety and Operations
Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang
Abstract:
The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.
Keywords: Microscopic simulation, toll plaza, surrogate safety, application programming interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788281 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories
Authors: Arkady Bolotin
Abstract:
Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.
Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559280 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.
Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389279 A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning
Authors: Yuan-Jye Tseng, Fang-Yu Yu, Feng-Yi Huang
Abstract:
A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.Keywords: green design, assembly and disassembly sequence planning, green design for assembly, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778278 Modeling Ecological Responses of Some Forage Legumes in Iran
Authors: M. Keshavarzi
Abstract:
Grasslands of Iran are encountered with a vast desertification and destruction. Some legumes are plants of forage importance with high palatability. Studied legumes in this project are Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds were cultivated in research field of Kaboutarabad (33 km East of Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were cultivated in a split plot design with 3 replicate and two water treatments (weekly irrigation, and under stress with same amount per 15 days interval). Water entrance to each plots were measured by Partial flow. This project lasted 20 weeks. Destructive samplings (1m2 each time) were done weekly. At each sampling plants were gathered and weighed separately for each vegetative parts. An Area Meter (Vista) was used to measure root surface and leaf area. Total shoot and root fresh and dry weight, leaf area index and soil coverage were evaluated too. Dry weight was achieved in 750c oven after 24 hours. Statgraphic and Harvard Graphic software were used to formulate and demonstrate the parameters curves due to time. Our results show that Trifolium repens has affected 60 % and Medicago sativa 18% by water stress. Onobrychis total fresh weight was reduced 45%. Dry weight or Biomass in alfalfa is not so affected by water shortage. This means that in alfalfa fields we can decrease the irrigation amount and have some how same amount of Biomass. Onobrychis show a drastic decrease in Biomass. The increases in total dry matter due to time in studied plants are formulated. For Trifolium repens if removal or cattle entrance to meadows do not occurred at perfect time, it will decrease the palatability and water content of the shoots. Water stress in a short period could develop the root system in Trifolium repens, but if it last more than this other ecological and soil factors will affect the growth of this plant. Low level of soil water is not so important for studied legume forges. But water shortage affect palatability and water content of aerial parts. Leaf area due to time in studied legumes is formulated. In fact leaf area is decreased by shortage in available water. Higher leaf area means higher forage and biomass production. Medicago and Onobrychis reach to the maximum leaf area sooner than Trifolium and are able to produce an optimum soil cover and inhibit the transpiration of soil water of meadows. Correlation of root surface to Total biomass in studied plants is formulated. Medicago under water stress show a 40% decrease in crown cover while at optimum condition this amount reach to 100%. In order to produce forage in areas without soil erosion Medicago is the best choice even with a shortage in water resources. It is tried to represent the growth simulation of three famous Forage Legumes. By growth simulation farmers and range managers could better decide to choose best plant adapted to water availability without designing different time and labor consuming field experiments.Keywords: Ecological parameters, Medicago, Onobrychis, Trifolium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699277 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163276 Latent Factors of Severity in Truck-Involved and Non-Truck-Involved Crashes on Freeways
Authors: Shin-Hyung Cho, Dong-Kyu Kim, Seung-Young Kho
Abstract:
Truck-involved crashes have higher crash severity than non-truck-involved crashes. There have been many studies about the frequency of crashes and the development of severity models, but those studies only analyzed the relationship between observed variables. To identify why more people are injured or killed when trucks are involved in the crash, we must examine to quantify the complex causal relationship between severity of the crash and risk factors by adopting the latent factors of crashes. The aim of this study was to develop a structural equation or model based on truck-involved and non-truck-involved crashes, including five latent variables, i.e. a crash factor, environmental factor, road factor, driver’s factor, and severity factor. To clarify the unique characteristics of truck-involved crashes compared to non-truck-involved crashes, a confirmatory analysis method was used. To develop the model, we extracted crash data from 10,083 crashes on Korean freeways from 2008 through 2014. The results showed that the most significant variable affecting the severity of a crash is the crash factor, which can be expressed by the location, cause, and type of the crash. For non-truck-involved crashes, the crash and environment factors increase severity of the crash; conversely, the road and driver factors tend to reduce severity of the crash. For truck-involved crashes, the driver factor has a significant effect on severity of the crash although its effect is slightly less than the crash factor. The multiple group analysis employed to analyze the differences between the heterogeneous groups of drivers.
Keywords: Crash severity, structural equation modeling, truck-involved crashes, multiple group analysis, crash on freeway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340275 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture
Authors: Osama Al-Sehail
Abstract:
This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.Keywords: Biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522274 Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating
Authors: Jahar Sarkar
Abstract:
In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.Keywords: CO2 heat pump, dairy system, experiment, simulation model, validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874273 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831272 An Investigation of Performance versus Security in Cognitive Radio Networks with Supporting Cloud Platforms
Authors: Kurniawan D. Irianto, Demetres D. Kouvatsos
Abstract:
The growth of wireless devices affects the availability of limited frequencies or spectrum bands as it has been known that spectrum bands are a natural resource that cannot be added. Meanwhile, the licensed frequencies are idle most of the time. Cognitive radio is one of the solutions to solve those problems. Cognitive radio is a promising technology that allows the unlicensed users known as secondary users (SUs) to access licensed bands without making interference to licensed users or primary users (PUs). As cloud computing has become popular in recent years, cognitive radio networks (CRNs) can be integrated with cloud platform. One of the important issues in CRNs is security. It becomes a problem since CRNs use radio frequencies as a medium for transmitting and CRNs share the same issues with wireless communication systems. Another critical issue in CRNs is performance. Security has adverse effect to performance and there are trade-offs between them. The goal of this paper is to investigate the performance related to security trade-off in CRNs with supporting cloud platforms. Furthermore, Queuing Network Models with preemptive resume and preemptive repeat identical priority are applied in this project to measure the impact of security to performance in CRNs with or without cloud platform. The generalized exponential (GE) type distribution is used to reflect the bursty inter-arrival and service times at the servers. The results show that the best performance is obtained when security is disabled and cloud platform is enabled.
Keywords: Cloud Platforms, Cognitive Radio Networks, GEtype Distribution, Performance Vs Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521271 Cross-Cultural Cooperation and Innovation: An Exploration of Chinese Foreign Direct Investment in Europe
Authors: Yongsheng Guo, Shuchao Li
Abstract:
This study explores Chinese Foreign Direct Investment (FDI) in Europe and the cross-cultural cooperation between Chinese and European managers. The aim of this research is to shed light on the phenomenon of investments in developed countries from an emerging market and to gain insights into the cooperation process. A grounded theory approach is adopted, and 46 semi-structured interviews were conducted with 10 case companies in Germany and 13 case companies in the UK. Grounded theory models are developed from primary data and interview quotes are used to support the themes. The interviewees perceived differences between the two parties in cultural traits, management concepts, knowledge structure and resource endowment between the two parties. Chinese and European partners can take advantage of different resources and cooperate in innovative ways to improve corporate performance. Moreover, both parties appreciate different ethical and cultural characteristics and complement each other to develop a combined organizational culture. This study proposes an ethical and cultural diversity theory in international management arguing that a team with diversified values and behaviours may be more excited and motivated. This study suggests that “resource complement” and “cross-cultural cooperation” might be an advantage for international investment. Firms are encouraged to open their minds and cooperate with partners with different resources and cultures. The authorities may review the FDI policies to reduce social and political barriers.
Keywords: Cross-culture, FDI, China, Europe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173270 Info-participation of the Disabled Using the Mixed Preference Data in Improving Their Travel Quality
Authors: Y. Duvarci, S. Mizokami
Abstract:
Today, the preferences and participation of the TD groups such as the elderly and disabled is still lacking in decision-making of transportation planning, and their reactions to certain type of policies are not well known. Thus, a clear methodology is needed. This study aimed to develop a method to extract the preferences of the disabled to be used in the policy-making stage that can also guide to future estimations. The method utilizes the combination of cluster analysis and data filtering using the data of the Arao city (Japan). The method is a process that follows: defining the TD group by the cluster analysis tool, their travel preferences in tabular form from the household surveys by policy variableimpact pairs, zones, and by trip purposes, and the final outcome is the preference probabilities of the disabled. The preferences vary by trip purpose; for the work trips, accessibility and transit system quality policies with the accompanying impacts of modal shifts towards public mode use as well as the decreasing travel costs, and the trip rate increase; for the social trips, the same accessibility and transit system policies leading to the same mode shift impact, together with the travel quality policy area leading to trip rate increase. These results explain the policies to focus and can be used in scenario generation in models, or any other planning purpose as decision support tool.
Keywords: Transportation Disadvantaged, Disabled, Mixed Preference, Stated Preference Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079269 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation
Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz
Abstract:
Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with successKeywords: Software Metrics, Software Cost Estimation, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957268 Landfill Failure Mobility Analysis: A Probabilistic Approach
Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed
Abstract:
Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286267 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.
Keywords: Autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321266 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208265 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: Actionable pattern discovery, education, emotion, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526264 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. To determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 % and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.
Keywords: Desalination, Exergy, Membrane distillation, Second law efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330263 Liquid-Liquid Equilibrium for the Binary Mixtures of α-Pinene + Water and α-Terpineol + Water
Authors: Herti Utami, Sutijan, Roto, Wahyudi Budi Sediawan
Abstract:
α-Pinene is the main component of the most turpentine oils. The hydration of α-pinene with acid catalysts leads to a complex mixture of monoterpenes. In order to obtain more valuable products, the α-pinene in the turpentine can be hydrated in dilute mineral acid solutions to produce α-terpineol. The design of separation processes requires information on phase equilibrium and related thermodynamic properties. This paper reports the results of study on liquid-liquid equilibrium (LLE) of system containing α- pinene + water and α-terpineol + water. Binary LLE for α-pinene + water system, and α-terpineol + water systems were determined by experiment at 301K and atmospheric pressure. The two component mixture was stirred for about 30min, then the mixture was left for about 2h for complete phase separation. The composition of both phases was analyzed by using a Gas Chromatograph. The experimental data were correlated by considering both NRTL and UNIQUAC activity coefficient models. The LLE data for the system of α-pinene + water and α-terpineol + water were correlated successfully by the NRTL model. The experimental data were not satisfactorily fitted by the UNIQUAC model. The NRTL model (α =0.3) correlates the LLE data for the system of α-pinene + water at 301K with RMSD of 0.0404%. And the NRTL model (α =0.61) at 301K with RMSD of 0.0058 %. The NRTL model (α =0.3) correlates the LLE data for the system of α- terpineol + water at 301K with RMSD of 0.1487% and the NRTL model (α =0.6) at 301K with RMSD of 0.0032%, between the experimental and calculated mole fractions.Keywords: α-Pinene, α-Terpineol, Liquid-liquid Equilibrium, NRTL model, UNIQUAC model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4977262 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof
Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini
Abstract:
The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.Keywords: CFD, roof, building, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609261 Operation Planning of Concrete Box Girder Bridge by 4D CAD Visualization Techniques
Authors: Mohammad Rohani, Gholamali Shafabakhsh, Abdolhosein Haddad, Ehsan Asnaashari
Abstract:
Visual simulation has emerged as a key planning tool in built environment because it enables architects, engineers and project managers to visualize construction process evolution before the project actual commences. This provides an efficient technology for reducing time and cost through planning and controlling resources, machines and materials. With the development of infrastructure projects and the massive civil constructions such as bridges, urban tunnels and highways as well as sensitivity of their construction operations, it is very necessary to apply proper planning methods. Implementation of visual techniques into management of construction projects can provide a fundamental foundation for projects with massive activities and duplicate items. So, the purpose of this paper is to develop visual simulation management techniques for infrastructure projects such as highways bridges by the use of Four-Dimensional Computer-Aided design Models. This project simulates operational assembly-line for Box-Girder Concrete Bridges which it would be able to optimize the sequence and interaction of project activities and on the other hand, it would minimize any unintended conflicts prior to project start. In this paper, after introducing the various planning methods by building information model and concrete bridges in highways, an executive case study is demonstrated and then a visual technique (4D CAD) will be applied for the case. In the final step, the user feedback for interacting by this system evaluated according to six criteria.
Keywords: 4D application area, Box-Girder concrete bridges, CAD model, visual planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580260 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040259 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203258 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.
Keywords: Learning style, VARK, sensory preferences, identification model, didactic practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5421257 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.
Keywords: Competitive, environment, fiscal policy, macro-economic stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952256 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka
Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake
Abstract:
Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.
Keywords: AFT model, first employment, proportional hazard, survey design, waiting time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122255 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893254 Absorption of Volatile Organic Compounds into Polydimethylsiloxane: Phase Equilibrium Computation at Infinite Dilution
Authors: Edison Muzenda, Corina M Mateescu
Abstract:
Group contribution methods such as the UNIFAC are very useful to researchers and engineers involved in synthesis, feasibility studies, design and optimization of separation processes. They can be applied successfully to predict phase equilibrium and excess properties in the development of chemical and separation processes. The main focus of this work was to investigate the possibility of absorbing selected volatile organic compounds (VOCs) into polydimethylsiloxane (PDMS) using three selected UNIFAC group contribution methods. Absorption followed by subsequent stripping is the predominant available abatement technology of VOCs from flue gases prior to their release into the atmosphere. The original, modified and effective UNIFAC models were used in this work. The thirteen selected VOCs that have been considered in this research are: pentane, hexane, heptanes, trimethylamine, toluene, xylene, cyclohexane, butyl acetate, diethyl acetate, chloroform, acetone, ethyl methyl ketone and isobutyl methyl ketone. The computation was done for solute VOC concentration of 8.55x10-8 which is well in the infinite dilution region. The results obtained in this study compare very well with those published in literature obtained through both measurements and predictions. The phase equilibrium obtained in this study show that PDMS is a good absorbent for the removal of VOCs from contaminated air streams through physical absorption.Keywords: Absorption, Computation, Feasibility studies, Infinite dilution, Volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956