Search results for: rule based systems.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13936

Search results for: rule based systems.

10846 Semi-Automatic Analyzer to Detect Authorial Intentions in Scientific Documents

Authors: Kanso Hassan, Elhore Ali, Soule-dupuy Chantal, Tazi Said

Abstract:

Information Retrieval has the objective of studying models and the realization of systems allowing a user to find the relevant documents adapted to his need of information. The information search is a problem which remains difficult because the difficulty in the representing and to treat the natural languages such as polysemia. Intentional Structures promise to be a new paradigm to extend the existing documents structures and to enhance the different phases of documents process such as creation, editing, search and retrieval. The intention recognition of the author-s of texts can reduce the largeness of this problem. In this article, we present intentions recognition system is based on a semi-automatic method of extraction the intentional information starting from a corpus of text. This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain. This approach uses the construction of a semi-formal ontology which considered as the conceptualization of the intentional information contained in a text. An experiments on scientific publications in the field of computer science was considered to validate this approach.

Keywords: Information research, text analyzes, intentionalstructure, segmentation, ontology, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
10845 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
10844 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
10843 Efficient Web Usage Mining Based on K-Medoids Clustering Technique

Authors: P. Sengottuvelan, T. Gopalakrishnan

Abstract:

Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.

Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
10842 A Six-Year Case Study Evaluating the Stakeholders’ Requirements and Satisfaction in Higher Educational Establishments

Authors: Ioannis I. Αngeli

Abstract:

Worldwide and mainly in the European Union, many standards, regulations, models and systems exists for the evaluation and identification of stakeholders’ requirements of individual universities and higher education (HE) in general. All systems are targeting to measure or evaluate the Universities’ Quality Assurance Systems and the services offered to the recipients of HE, mainly the students. Numerous surveys were conducted in the past either by each university or by organized bodies to identify the students’ satisfaction or to evaluate to what extent these requirements are fulfilled. In this paper, the main results of an ongoing 6-year joint research will be presented very briefly. This research deals with an in depth investigation of student’s satisfaction, students personal requirements, a cup analysis among these two parameters and compares different universities. Through this research an attempt will be made to address four very important questions in higher education establishments (HEE): (1) Are there any common requirements, parameters, good practices or questions that apply to a large number of universities that will assure that students’ requirements are fulfilled? (2) Up to what extent the individual programs of HEE fulfil the requirements of the stakeholders? (3) Are there any similarities on specific programs among European HEE? (4) To what extent the knowledge acquired in a specific course program is utilized or used in a specific country? For the execution of the research an internationally accepted questionnaire(s) was used to evaluate up to what extent the students’ requirements and satisfaction were fulfilled in 2012 and five years later (2017). Samples of students and or universities were taken from many European Universities. The questionnaires used, the sampling method and methodology adopted, as well as the comparison tables and results will be very valuable to any university that is willing to follow the same route and methodology or compare the results with their own HHE. Apart from the unique methodology, valuable results are demonstrated from the four case studies. There is a great difference between the student’s expectations or importance from what they are getting from their universities (in all parameters they are getting less). When there is a crisis or budget cut in HEE there is a direct impact to students. There are many differences on subjects taught in European universities.

Keywords: Quality in higher education, students’ requirements, education standards, student’s survey, stakeholder’s requirements, Mechanical Engineering courses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
10841 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design

Authors: D. Mondal, A. Chakrabarti, A. Sengupta

Abstract:

This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
10840 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: Almond shell, PHBH, composite, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
10839 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
10838 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

Authors: Manisha Dubey, Aalok Dubey

Abstract:

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.

Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
10837 Students as Global Citizens: Lessons from the International Study Tour

Authors: Ana Hol

Abstract:

Study and work operations are being transformed with the uses of technologies and are consequently becoming global. This paper outlines lessons learned based on the international study tour that Australian Bachelor of Information Systems students undertook. This research identifies that for the study tour to be successful, students need to gain skills that global citizens require. For example, students will need to gain an understanding of local cultures, local customs and habits. Furthermore, students would also need to gain an understanding of how a field of their future career expertise operates in the host country, how study and business are conducted internationally, which tools and technologies are currently being utilized on a global scale, what trends drive future developments world-wide and how business negotiations and collaborations are being undertaken across borders. Furthermore, this research provides a guide to educators who are planning, guiding and running study tours as it outlines the requirements of having a pre-tour preparatory session, carefully planned and executed tour itineraries and post-tour sessions during which students can reflect on their experiences and lessons learned so that they can apply them to future international business visits and ventures.

Keywords: Global education, international experiences, international study tours, students as global citizens, student centered education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
10836 Quantification of Technology Innovation Usinga Risk-Based Framework

Authors: Gerard E. Sleefe

Abstract:

There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.

Keywords: innovation, risk assessment, product development, technology management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
10835 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: Neural networks, motion detection, signature detection, convolutional neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
10834 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
10833 Error Rate Performance Comparisons of Precoding Schemes over Fading Channels for Multiuser MIMO

Authors: M. Arulvizhi

Abstract:

In Multiuser MIMO communication systems, interuser interference has a strong impact on the transmitted signals. Precoding technique schemes are employed for multiuser broadcast channels to suppress an interuser interference. Different Linear and nonlinear precoding schemes are there. For the massive system dimension, it is difficult to design an appropriate precoding algorithm with low computational complexity and good error rate performance at the same time over fading channels. This paper describes the error rate performance of precoding schemes over fading channels with the assumption of perfect channel state information at the transmitter. To estimate the bit error rate performance, different propagation environments namely, Rayleigh, Rician and Nakagami fading channels have been offered. This paper presents the error rate performance comparison of these fading channels based on precoding methods like Channel Inversion and Dirty paper coding for multiuser broadcasting system. MATLAB simulation has been used. It is observed that multiuser system achieves better error rate performance by Dirty paper coding over Rayleigh fading channel.

Keywords: Multiuser MIMO, channel inversion precoding, dirty paper coding, fading channels, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
10832 Event Template Generation for News Articles

Authors: A. Kowcika, E. Umamaheswari, T.V. Geetha

Abstract:

In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.

Keywords: Event Extraction, Score based Clustering, Segmentation, Template Generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
10831 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
10830 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey

Authors: Nurdan Yildirim, Arif Hepbasli

Abstract:

Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.

Keywords: Buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
10829 Play in College: Shifting Perspectives and Creative Problem-Based Play

Authors: Agni Stylianou-Georgiou, Eliza Pitri

Abstract:

This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.

Keywords: Creative problem-based play, educational games, flexible thinking, tertiary education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
10828 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.

Keywords: Plasmonics, on-chip integration, Silicon photonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
10827 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: Energy management, load profile, smart plug, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
10826 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise

Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis

Abstract:

In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.

Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, copper channel Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
10825 Enhance Image Transmission Based on DWT with Pixel Interleaver

Authors: Muhanned Alfarras

Abstract:

The recent growth of using multimedia transmission over wireless communication systems, have challenges to protect the data from lost due to wireless channel effect. Images are corrupted due to the noise and fading when transmitted over wireless channel, in wireless channel the image is transmitted block by block, Due to severe fading, entire image blocks can be damaged. The aim of this paper comes out from need to enhance the digital images at the wireless receiver side. Proposed Boundary Interpolation (BI) Algorithm using wavelet, have been adapted here used to reconstruction the lost block in the image at the receiver depend on the correlation between the lost block and its neighbors. New Proposed technique by using Boundary Interpolation (BI) Algorithm using wavelet with Pixel interleaver has been implemented. Pixel interleaver work on distribute the pixel to new pixel position of original image before transmitting the image. The block lost through wireless channel is only effects individual pixel. The lost pixels at the receiver side can be recovered by using Boundary Interpolation (BI) Algorithm using wavelet. The results showed that the New proposed algorithm boundary interpolation (BI) using wavelet with pixel interleaver is better in term of MSE and PSNR.

Keywords: Image Transmission, Wavelet, Pixel Interleaver, Boundary Interpolation Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
10824 Study of Tower Grounding Resistance Effected Back Flashover to 500 kV Transmission Line in Thailand by using ATP/EMTP

Authors: B. Marungsri, S. Boonpoke, A. Rawangpai, A. Oonsivilai, C. Kritayakornupong

Abstract:

This study describes analysis of tower grounding resistance effected the back flashover voltage across insulator string in a transmission system. This paper studies the 500 kV transmission lines from Mae Moh, Lampang to Nong Chok, Bangkok, Thailand, which is double circuit in the same steel tower with two overhead ground wires. The factor of this study includes magnitude of lightning stroke, and front time of lightning stroke. Steel tower uses multistory tower model. The assumption of studies based on the return stroke current ranged 1-200 kA, front time of lightning stroke between 1 μs to 3 μs. The simulations study the effect of varying tower grounding resistance that affect the lightning current. Simulation results are analyzed lightning over voltage that causes back flashover at insulator strings. This study helps to know causes of problems of back flashover the transmission line system, and also be as a guideline solving the problem for 500 kV transmission line systems, as well.

Keywords: Tower grounding resistance, back flashover, multistory tower model, lightning stroke current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4341
10823 An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals

Authors: Rajkishore Prasad, Hiroshi Saruwatari, Kiyohiro Shikano

Abstract:

This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance

Keywords: Blind signal separation, independent component analysis, negentropy, convolutive mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
10822 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
10821 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
10820 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem

Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.

Abstract:

Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.

Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
10819 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

Authors: Elif Derya UBEYLI, Inan GULER

Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
10818 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
10817 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317