Search results for: personalization of learning resources.
254 A Qualitative Study into the Success and Challenges in Embedding Evidence-Based Research Methods in Operational Policing Interventions
Authors: Ahmed Kadry, Gwyn Dodd
Abstract:
There has been a growing call globally for police forces to embed evidence-based policing research methods into police interventions in order to better understand and evaluate their impact. This research study highlights the success and challenges that police forces may encounter when trying to embed evidence-based research methods within their organisation. Ten in-depth qualitative interviews were conducted with police officers and staff at Greater Manchester Police (GMP) who were tasked with integrating evidence-based research methods into their operational interventions. The findings of the study indicate that with adequate resources and individual expertise, evidence-based research methods can be applied to operational work, including the testing of initiatives with strict controls in order to fully evaluate the impact of an intervention. However, the findings also indicate that this may only be possible where an operational intervention is heavily resourced with police officers and staff who have a strong understanding of evidence-based policing research methods, attained for example through their own graduate studies. In addition, the findings reveal that ample planning time was needed to trial operational interventions that would require strict parameters for what would be tested and how it would be evaluated. In contrast, interviewees underscored that operational interventions with the need for a speedy implementation were less likely to have evidence-based research methods applied. The study contributes to the wider literature on evidence-based policing by providing considerations for police forces globally wishing to apply evidence-based research methods to more of their operational work in order to understand their impact. The study also provides considerations for academics who work closely with police forces in assisting them to embed evidence-based policing. This includes how academics can provide their expertise to police decision makers wanting to underpin their work through evidence-based research methods, such as providing guidance on how to evaluate the impact of their work with varying research methods that they may otherwise be unaware of.
Keywords: evidence based policing, evidence-based practice, operational policing, organisational change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306253 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah
Authors: F. Ahwide, Y. Bouker, K. Hatem
Abstract:
This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Darnah, average speeds are 10m, 20m and 40m and 6.57 m/s, 7.18 m/s, and 8.09 m/s, respectively. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (31.3% of total expected wind energy), followed by 17.9% SSW, 11.5% NNW and 8.2% WNW
In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested and a reduction of 18% over the net AEP. At 80m, the estimation of energy yield for Derna, Al- Maqrun, Tarhuna and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively.
It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.
Keywords: Wind turbines, wind data, energy yield, micrositting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637252 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyiğit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.Keywords: Complex network approach, fossil fuel, international trade, network theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386251 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812250 The Reason of Principles of Construction Engineering and Management Being Necessary for Contracting Firms and Their Projects Managers
Authors: Mamoon Mousa Atout
Abstract:
The industries of construction are in continuous growth not only in Middle East rejoin but almost all over the world. For the last fifteen years, big expansion and increase of different types of projects has been observed. Many infrastructural projects have been developed, high rise buildings, big shopping malls, power sub-stations, roads, bridges, schools, universities and developing many of new cities with full and complete facilities. The growth and enlargement of the mentioned developed projects has been accomplished through many international and local contracting organizations. Senior management of these organizations depend on their qualified and experienced team whom are aware of the implications of project management, construction management, engineering management and resource management during tendering till final completion of the project. This research aims to find out why reasons of principles of construction engineering and management are necessary for contracting firms and their managers. Principles of construction management help contracting organizations to accomplish and deliver projects without delay. This can be maintained by establishing guidelines’ details for updating the adopted system of construction management that they have through qualified and experienced project managers. The research focuses on benefits of other essential skills of projects planning, monitoring and control. Defining roles and responsibilities of contractor project managers during tendering and execution is a part of the investigated factors that will be analyzed. Other skills like optimizing and utilizing the obtainable project resources to deliver the project within time, cost and quality will be also investigated to find out how these factors are affecting the performance of contracting firms, projects managers and projects. The conclusion of the research will help senior management team and the contractors project managers about the benefits of implications and benefits construction management system and its effect upon the performance and knowledge of contract values that they have, and the optimal profit margin of the firm it.
Keywords: Construction management, contracting firms, project managers, planning processes, roles and responsibilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736249 The Study of Tourists’ Behavior in Water Usage in Hotel Business: Case Study of Phuket Province, Thailand
Authors: A. Pensiri, K. Nantaporn, P. Parichut
Abstract:
Tourism is very important to the economy of many countries due to the large contribution in the areas of employment and income generation. However, the rapid growth of tourism can also be considered as one of the major uses of water user, and therefore also have a significant and detrimental impact on the environment. Guest behavior in water usage can be used to manage water in hotels for sustainable water resources management. This research presents a study of hotel guest water usage behavior at two hotels, namely Hotel A (located in Kathu district) and Hotel B (located in Muang district) in Phuket Province, Thailand, as case studies. Primary and secondary data were collected from the hotel manager through interview and questionnaires. The water flow rate was measured in-situ from each water supply device in the standard room type at each hotel, including hand washing faucets, bathroom faucets, shower and toilet flush. For the interview, the majority of respondents (n = 204 for Hotel A and n = 244 for Hotel B) were aged between 21 years and 30 years (53% for Hotel A and 65% for Hotel B) and the majority were foreign (78% in Hotel A, and 92% in Hotel B) from American, France and Austria for purposes of tourism (63% in Hotel A, and 55% in Hotel B). The data showed that water consumption ranged from 188 litres to 507 liters, and 383 litres to 415 litres per overnight guest in Hotel A and Hotel B (n = 244), respectively. These figures exceed the water efficiency benchmark set for Tropical regions by the International Tourism Partnership (ITP). It is recommended that guest water saving initiatives should be implemented at hotels. Moreover, the results showed that guests have high satisfaction for the hotels, the front office service reveal the top rates of average score of 4.35 in Hotel A and 4.20 in Hotel B, respectively, while the luxury decoration and room cleanliness exhibited the second satisfaction scored by the guests in Hotel A and B, respectively. On the basis of this information, the findings can be very useful to improve customer service satisfaction and pay attention to this particular aspect for better hotel management.
Keywords: Hotel, tourism, Phuket, water usage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298248 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115247 Twitter Sentiment Analysis during the Lockdown on New Zealand
Authors: Smah Doeban Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.
Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584246 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability
Authors: Shobhit Mittal
Abstract:
Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.
Keywords: Strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158245 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763244 GridNtru: High Performance PKCS
Authors: Narasimham Challa, Jayaram Pradhan
Abstract:
Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.Keywords: Alchemi, GridNtru, Ntru, PKCS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691243 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731242 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342241 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671240 Exploring Perceptions and Practices About Information and Communication Technologies in Business English Teaching in Pakistan
Authors: M. Athar Hussain, N.B. Jumani, Munazza Sultana., M. Zafar Iqbal
Abstract:
Language Reforms and potential use of ICTs has been a focal area of Higher Education Commission of Pakistan. Efforts are being accelerated to incorporate fast expanding ICTs to bring qualitative improvement in language instruction in higher education. This paper explores how university teachers are benefitting from ICTs to make their English class effective and what type of problems they face in practicing ICTs during their lectures. An in-depth qualitative study was employed to understand why language teachers tend to use ICTs in their instruction and how they are practicing it. A sample of twenty teachers from five universities located in Islamabad, three from public sector and two from private sector, was selected on non-random (Snowball) sampling basis. An interview with 15 semi-structured items was used as research instruments to collect data. The findings reveal that business English teaching is facilitated and improved through the use of ICTs. The language teachers need special training regarding the practices and implementation of ICTs. It is recommended that initiatives might be taken to equip university language teachers with modern methodology incorporating ICTs as focal area and efforts might be made to remove barriers regarding the training of language teachers and proper usage of ICTs.
Keywords: Information and communication technologies, internet assisted learning, teaching business English, online instructional content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947239 Technology Roadmapping in Defense Industry
Authors: Sevgi Özlem Bulu, Arif Furkan Mendi, Tolga Erol, İzzet Gökhan Özbilgin
Abstract:
The rapid progress of technology in today's competitive conditions has also accelerated companies' technology development activities. As a result, companies are paying more attention to R&D studies and are beginning to allocate a larger share to R&D projects. A more systematic, comprehensive, target-oriented implementation of R&D studies is crucial for the company to achieve successful results. As a consequence, Technology Roadmap (TRM) is gaining importance as a management tool. It has critical prospects for achieving medium and long term success as it contains decisions about past business, future plans, technological infrastructure. When studies on TRM are examined, projects to be placed on the roadmap are selected by many different methods. Generally preferred methods are based on multi-criteria decision making methods. Management of selected projects becomes an important point after the selection phase of the projects. At this stage, TRM are used. TRM can be created in many different ways so that each institution can prepare its own Technology Roadmap according to their strategic plan. Depending on the intended use, there can be TRM with different layers at different sizes. In the evaluation phase of the R&D projects and in the creation of the TRM, HAVELSAN, Turkey's largest defense company in the software field, carries out this process with great care and diligence. At the beginning, suggested R&D projects are evaluated by the Technology Management Board (TMB) of HAVELSAN in accordance with the company's resources, objectives, and targets. These projects are presented to the TMB periodically for evaluation within the framework of certain criteria by board members. After the necessary steps have been passed, the approved projects are added to the time-based TRM, which is composed of four layers as market, product, project and technology. The use of a four-layered roadmap provides a clearer understanding and visualization of company strategy and objectives. This study demonstrates the benefits of using TRM, four-layered Technology Roadmapping and the possibilities for the institutions in the defense industry.
Keywords: Project selection, R&D in defense industry, R&D project selection, technology roadmapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000238 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)
Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,
Abstract:
One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.
Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021237 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research
Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová
Abstract:
Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.
Keywords: Special elementary school, mobile touch device, iPad, attention, math board.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287236 A 3D Numerical Environmental Modeling Approach for Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design
Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee
Abstract:
Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental meso-scale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to that obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.
Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, FVM, sensitivity analysis, total petroleum hydrocarbons, TPH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524235 Modeling Decentralized Source-Separation Systems for Urban Waste Management
Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang
Abstract:
Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.
Keywords: Decentralization, ecological sanitation, material flow analysis, source-separation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925234 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem
Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez
Abstract:
Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.
Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975233 Soil Quality State and Trends in New Zealand’s Largest City after 15 Years
Authors: Fiona Curran-Cournane
Abstract:
Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009- 2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6 and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.
Keywords: Heavy metals, Pollution Index, Rural and Urban land use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210232 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.
Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586231 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System
Authors: M. L. Anitha, K. A. Radhakrishna Rao
Abstract:
With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.
Keywords: Biometrics, hand geometry features, inner knuckle print, recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152230 Oracle JDE Enterprise One ERP Implementation: A Case Study
Authors: Abhimanyu Pati, Krishna Kumar Veluri
Abstract:
The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.
Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800229 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: Stacking, multi-layers, ensemble, multi-class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093228 Agro-Morphological Characterization of Vicia faba L. Accessions in the Kingdom of Saudi Arabia
Authors: Zia Amjad, Salem S. Alghamdi
Abstract:
The study was conducted at the student educational farm at the College of Food and Agriculture in the Kingdom of Saudi Arabia. The aim of study was to characterize 154 Vicia faba L. accessions using agro-morphological traits based on The International Union for the Protection of New Varieties of Plants (UPOV) and The International Board for Plant Genetic Resources (IBPGR) descriptors. This research is significant as it contributes to the understanding of the genetic diversity and potential yield of V. faba in Saudi Arabia. In the study, 24 agro-morphological characters including 11 quantitative and 13 qualitative were observed for genetic variation. All the results were analyzed using multivariate analysis i.e., principal component analysis (PCA). First, six principal components (PC) had eigenvalues greater than one; accounted for 72% of available V. faba genetic diversity. However, first three components revealed more than 10% of genetic diversity each i.e., 22.36%, 15.86% and 10.89% respectively. PCA distributed the V. faba accessions into different groups based on their performance for the characters under observation. PC-1, which represented 22.36% of the genetic diversity, was positively associated with stipule spot pigmentation, intensity of streaks, pod degree of curvature and to some extent with 100 seed weight. PC-2 covered 15.86 of the genetic diversity and showed positive association for average seed weight per plant, pod length, number of seeds per plant, 100 seed weight, stipule spot pigmentation, intensity of streaks (same as in PC-1) and to some extent for pod degree of curvature and number of pods per plant. PC-3 revealed 10.89% of genetic diversity and expressed positive association for number of pods per plant and number of leaflets per plant. This study contributes to the understanding of the genetic diversity and potential yield of V. faba in the Kingdom of Saudi Arabia. By establishing a core collection of V. faba, the research provides a valuable resource for future conservation and utilization of this crop worldwide.
Keywords: Agro-morphological characterization, genetic diversity, core collection, PCA, Vicia faba L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202227 A Software Framework for Predicting Oil-Palm Yield from Climate Data
Authors: Mohd. Noor Md. Sap, A. Majid Awan
Abstract:
Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979226 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: Heuristic, MIP model, Remedial course, School, Timetabling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634225 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: Cooccurrence graph, entity relation graph, unstructured text, weighted distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684