Search results for: supervised machine learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2918

Search results for: supervised machine learning.

2648 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2647 E-learning and m-learning: Africa-s Search for a Suitable Concept in the Era of Cloud Computing?

Authors: J. Seke Mboungou Mouyabi

Abstract:

This paper is an exploration of the conceptual confusion between E-learning and M-learning particularly in Africa. Section I provides a background to the development of E-learning and M-learning. Section II focuses on the conceptual analysis as it applies to Africa. It is with an investigative and expansive mind that this paper is elaborated to respond to a profound question of the suitability of the concepts in a particular era in Africa. The aim of this paper is therefore to shed light on which concept best suits the unique situation of Africa in the era of cloud computing.

Keywords: African Concept, Cloud computing, E-learning, Mlearning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
2646 Enhancing Learning Experiences in Outcomebased Higher Education: A Step towards Student Centered Learning

Authors: K. Kumpas

Abstract:

Bologna process has influenced enhancing studentcentered learning in Estonian higher education since 2009, but there is no information about what helps or hinders students to achieve learning outcomes and how quality of student-centered learning might be improved. The purpose of this study is to analyze two questions from outcome-based course evaluation questionnaire which is used in Estonian Entrepreneurship University of Applied Sciences. In this qualitative research, 384 students from 22 different courses described what helped and hindered them to achieve learning outcomes. The analysis showed that the aspects that hinder students to achieve learning outcomes are mostly personal: time management, family and personal matters, motivation and non-academic activities. The results indicate that students- learning is commonly supported by school, where teacher, teaching and characteristics of teaching methods help mostly to achieve learning outcomes, also learning material, practical assignments and independent study was brought up as one of the key elements.

Keywords: Learning outcomes, learning quality, student-centered learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2645 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2644 The Visual Inspection of Surgical Tasks Using Machine Vision: Applications to Robotic Surgery

Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

In this paper, the feasibility of using machine vision to assess task completion in a surgical intervention is investigated, with the aim of incorporating vision based inspection in robotic surgery systems. The visually rich operative field presents a good environment for the development of automated visual inspection techniques in these systems, for a more comprehensive approach when performing a surgical task. As a proof of concept, machine vision techniques were used to distinguish the two possible outcomes i.e. satisfactory or unsatisfactory, of three primary surgical tasks involved in creating a burr hole in the skull, namely incision, retraction, and drilling. Encouraging results were obtained for the three tasks under consideration, which has been demonstrated by experiments on cadaveric pig heads. These findings are suggestive for the potential use of machine vision to validate successful task completion in robotic surgery systems. Finally, the potential of using machine vision in the operating theatre, and the challenges that must be addressed, are identified and discussed.

Keywords: Machine vision, robotic surgery, visual inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
2643 Study of Shaft Voltage on Short Circuit Alternator with Static Frequency Converter

Authors: Arun Kumar Datta, Manisha Dubey, Shailendra Jain

Abstract:

Electric machines are driven nowadays by static system popularly known as soft starter. This paper describes a thyristor based static frequency converter (SFC) to run a large synchronous machine installed at a short circuit test laboratory. Normally a synchronous machine requires prime mover or some other driving mechanism to run. This machine doesn’t need a prime mover as it operates in dual mode. In the beginning SFC starts this machine as a motor to achieve the full speed. Thereafter whenever required it can be converted to generator mode. This paper begins with the various starting methodology of synchronous machine. Detailed of SFC with different operational modes have been analyzed. Shaft voltage is a very common phenomenon for the machines with static drives. Various causes of shaft voltages in perspective with this machine are the main attraction of this paper.

Keywords: Capacitive coupling, electric discharge machining, inductive coupling, Shaft voltage, static frequency converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270
2642 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling

Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis

Abstract:

This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.

Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
2641 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions

Authors: Andrzej Śluzek

Abstract:

To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.

Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
2640 Design of the Roller Clamp Robotic Assembly System

Authors: S. S. Ngu, L. C. Kho, T. P. Tan, M. S. Osman

Abstract:

This work deals with the design of the robotic assembly system for the roller clamps. The task is characterized by high speed, high yield and safety engagement. This paper describes the design of different parts of an automated high speed machine to assemble the parts of roller clamps. The roller clamp robotic assembly system performs various processes in the assembly line which include clamp body and roller feeding, inserting the roller into the clamp body, and dividing the rejected clamp and successfully assembled clamp into their own tray. The electrical/electronics design of the machine is discussed. The target is to design a cost effective, minimum maintenance and high speed machine for the industry applications.

Keywords: Machine design, assembly machine, roller clamp, industry applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
2639 Combining Bagging and Boosting

Authors: S. B. Kotsiantis, P. E. Pintelas

Abstract:

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Keywords: data mining, machine learning, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
2638 Development of Mobile EEF Learning System (MEEFLS) for Mobile Learning Implementation in Kolej Poly-Tech MARA (KPTM)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile learning (m-learning) is a new method in teaching and learning process which combines technology of mobile device with learning materials. It can enhance student's engagement in learning activities and facilitate them to access the learning materials at anytime and anywhere. In Kolej Poly-Tech Mara (KPTM), this method is seen as an important effort in teaching practice and to improve student learning performance. The aim of this paper is to discuss the development of m-learning application called Mobile EEF Learning System (MEEFLS) to be implemented for Electric and Electronic Fundamentals course using Flash, XML (Extensible Markup Language) and J2ME (Java 2 micro edition). System Development Life Cycle (SDLC) was used as an application development approach. It has three modules in this application such as notes or course material, exercises and video. MEELFS development is seen as a tool or a pilot test for m-learning in KPTM.

Keywords: Flash, mobile device, mobile learning, teaching and learning, SDLC, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
2637 Three-phases Model of the Induction Machine Taking Account the Stator Faults

Authors: Djalal Eddine Khodja, Aissa Kheldoun

Abstract:

In this work we present the modelling of the induction machine, taking into consideration the stator defects of the induction machine. It is based on the theory of electromagnetic coupling of electrical circuits. In fact, for the modelling of stationary defects such as short circuit between turns in the same phase, we introduce only in the matrix the coefficients of resistance and inductance of stator and in the mutual inductance stator-rotor. These coefficients take account the number of turns in short-circuit deducted from the total number of turns in the same phase; in this way we obtain the number of useful turns. In addition, all these faults involved, will be used for the creation of the database that will be used to develop an automated system failures of the induction machine.

Keywords: Asynchronous machine, Indicatory Values Statorfaults, Multi-turns Model, Three-phases Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
2636 Tagging by Combining Rules- Based Method and Memory-Based Learning

Authors: Tlili-Guiassa Yamina

Abstract:

Many natural language expressions are ambiguous, and need to draw on other sources of information to be interpreted. Interpretation of the e word تعاون to be considered as a noun or a verb depends on the presence of contextual cues. To interpret words we need to be able to discriminate between different usages. This paper proposes a hybrid of based- rules and a machine learning method for tagging Arabic words. The particularity of Arabic word that may be composed of stem, plus affixes and clitics, a small number of rules dominate the performance (affixes include inflexional markers for tense, gender and number/ clitics include some prepositions, conjunctions and others). Tagging is closely related to the notion of word class used in syntax. This method is based firstly on rules (that considered the post-position, ending of a word, and patterns), and then the anomaly are corrected by adopting a memory-based learning method (MBL). The memory_based learning is an efficient method to integrate various sources of information, and handling exceptional data in natural language processing tasks. Secondly checking the exceptional cases of rules and more information is made available to the learner for treating those exceptional cases. To evaluate the proposed method a number of experiments has been run, and in order, to improve the importance of the various information in learning.

Keywords: Arabic language, Based-rules, exceptions, Memorybased learning, Tagging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
2635 Grid Learning; Computer Grid Joins to e- Learning

Authors: A. Nassiry, A. Kardan

Abstract:

According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.

Keywords: Distributed learning, Grid Learning, Grid network, SCORM standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
2634 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: Attributed community, attribute detection, community, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
2633 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241
2632 Learning Materials for Enhancing Sustainable Colour Fading Process of Fashion Products

Authors: C. W. Kan, H. F. Cheung, Y. S. Lee

Abstract:

This study examines the results of colour fading of cotton fabric by plasma-induced ozone treatment, with an aim to provide learning materials for fashion designers when designing colour fading effects in fashion products. Cotton knitted fabrics were dyed with red reactive dye with a colour depth of 1.5% and were subjected to ozone generated by a commercially available plasma machine for colour fading. The plasma-induced ozone treatment was conducted with different parameters: (i) air concentration = 10%, 30%, 50% and 70%; (ii) water content in fabric = 35% and 45%, and (iii) treatment time = 10 minutes, 20 minutes and 30 minutes. Finally, the colour properties of the plasma–induced ozone treated fabric were measured by spectrophotometer under illuminant D65 to obtain the CIE L*, CIE a* and CIE b* values.

Keywords: Learning materials, colour fading, colour properties, fashion products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2631 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: Emotion recognition, facial recognition, signal processing, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
2630 Route Training in Mobile Robotics through System Identification

Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings

Abstract:

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2629 Enhancement of Learning Style in Kolej Poly-Tech MARA (KPTM) via Mobile EEF Learning System (MEEFLS)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile communication provides access to the outside world without borders everywhere and at any time. The learning method that related to mobile communication technology is known as mobile learning (M-learning). It is a method that communicates learning materials with mobile device technology. The purpose of this method is to increase the interest in learning among students and assist them in obtaining learning materials at Kolej Poly-Tech MARA (KPTM) in order to improve the student’s performance in their study and to encourage educators to diversify the teaching practices. This paper discusses the student’s awareness for enhancement of learning style using mobile technologies and their readiness to apply the elements of mobile learning in learning to improve performance and interest in learning among students. An application called Mobile EEF Learning System (MEEFLS) has been developed as a tool to be used as a pilot test in KPTM.

Keywords: Awareness, MEEFLS, mobile learning, readiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
2628 Challenges and Opportunities of Cloud-Based E-Learning Systems

Authors: Kashif Laeeq, Zubair A. Shaikh

Abstract:

The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.

Keywords: Cloud-based e-learning, e-learning, cloud computing application, smart learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
2627 Knowledge Required for Avoiding Lexical Errors at Machine Translation

Authors: Yukiko Sasaki Alam

Abstract:

This research aims at finding out the causes that led to wrong lexical selections in machine translation (MT) rather than categorizing lexical errors, which has been a main practice in error analysis. By manually examining and analyzing lexical errors outputted by a MT system, it suggests what knowledge would help the system reduce lexical errors.

Keywords: Error analysis, causes of errors, machine translation, outputs evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2626 A Novel Nucleus-Based Classifier for Discrimination of Osteoclasts and Mesenchymal Precursor Cells in Mouse Bone Marrow Cultures

Authors: Andreas Heindl, Alexander K. Seewald, Martin Schepelmann, Radu Rogojanu, Giovanna Bises, Theresia Thalhammer, Isabella Ellinger

Abstract:

Bone remodeling occurs by the balanced action of bone resorbing osteoclasts (OC) and bone-building osteoblasts. Increased bone resorption by excessive OC activity contributes to malignant and non-malignant diseases including osteoporosis. To study OC differentiation and function, OC formed in in vitro cultures are currently counted manually, a tedious procedure which is prone to inter-observer differences. Aiming for an automated OC-quantification system, classification of OC and precursor cells was done on fluorescence microscope images based on the distinct appearance of fluorescent nuclei. Following ellipse fitting to nuclei, a combination of eight features enabled clustering of OC and precursor cell nuclei. After evaluating different machine-learning techniques, LOGREG achieved 74% correctly classified OC and precursor cell nuclei, outperforming human experts (best expert: 55%). In combination with the automated detection of total cell areas, this system allows to measure various cell parameters and most importantly to quantify proteins involved in osteoclastogenesis.

Keywords: osteoclasts, machine learning, ellipse fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2625 Codes beyond Bits and Bytes: A Blueprint for Artificial Life

Authors: Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq

Abstract:

The present study focuses on integrating Machine Learning and Genomics, hereafter termed ‘GenoLearning’, to develop Artificial Life (AL). This is achieved by leveraging gene editing to imbue genes with sequences capable of performing desired functions. To accomplish this, a specialized sub-network of Siamese Neural Network (SNN), named Transformer Architecture specialized in Sequence Analysis of Genes (TASAG), compares two sequences: the desired and target sequences. Differences between these sequences are analyzed, and necessary edits are made on-screen to incorporate the desired sequence into the target sequence. The edited sequence can then be synthesized chemically using a Computerized DNA Synthesizer (CDS). The CDS fabricates DNA strands according to the sequence displayed on a computer screen, aided by microprocessors. These synthesized DNA strands can be inserted into an ovum to initiate further development, eventually leading to the creation of an Embot, and ultimately, an H-Bot. While this study aims to explore the potential benefits of Artificial Intelligence (AI) technology, it also acknowledges and addresses the ethical considerations associated with its implementation.

Keywords: Machine Learning, Genomics, Genetronics, DNA, Transformer, Siamese Neural Network, Gene Editing, Artificial Life, H-Bot, Zoobot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91
2624 Learning Object Interface Adapted to the Learner's Learning Style

Authors: Zenaide Carvalho da Silva, Leandro Rodrigues Ferreira, Andrey Ricardo Pimentel

Abstract:

Learning styles (LS) refer to the ways and forms that the student prefers to learn in the teaching and learning process. Each student has their own way of receiving and processing information throughout the learning process. Therefore, knowing their LS is important to better understand their individual learning preferences, and also, understand why the use of some teaching methods and techniques give better results with some students, while others it does not. We believe that knowledge of these styles enables the possibility of making propositions for teaching; thus, reorganizing teaching methods and techniques in order to allow learning that is adapted to the individual needs of the student. Adapting learning would be possible through the creation of online educational resources adapted to the style of the student. In this context, this article presents the structure of a learning object interface adaptation based on the LS. The structure created should enable the creation of the adapted learning object according to the student's LS and contributes to the increase of student’s motivation in the use of a learning object as an educational resource.

Keywords: Adaptation, interface, learning object, learning style.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
2623 Learning Objects: A New Paradigm for ELearning Resource Development for Secondary Schools in Tanzania

Authors: S. K. Lujara, M. M. Kissaka, E. P. Bhalalusesa, L. Trojer

Abstract:

The Information and Communication Technologies (ICTs), and the Wide World Web (WWW) have fundamentally altered the practice of teaching and learning world wide. Many universities, organizations, colleges and schools are trying to apply the benefits of the emerging ICT. In the early nineties the term learning object was introduced into the instructional technology vernacular; the idea being that educational resources could be broken into modular components for later combination by instructors, learners, and eventually computes into larger structures that would support learning [1]. However in many developing countries, the use of ICT is still in its infancy stage and the concept of learning object is quite new. This paper outlines the learning object design considerations for developing countries depending on learning environment.

Keywords: e-Learning resources, granularity, learning objects, secondary schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2622 Group Learning for the Design of Human Resource Development for Enterprise

Authors: Hao-Hsi Tseng, Hsin-Yun Lee, Yu-Cheng Kuo

Abstract:

In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.

Keywords: Development, education, human resource, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
2621 The Design and Analysis of Learning Effects for a Game-based Learning System

Authors: Wernhuar Tarng, Weichian Tsai

Abstract:

The major purpose of this study is to use network and multimedia technologies to build a game-based learning system for junior high school students to apply in learning “World Geography" through the “role-playing" game approaches. This study first investigated the motivation and habits of junior high school students to use the Internet and online games, and then designed a game-based learning system according to situated and game-based learning theories. A teaching experiment was conducted to analyze the learning effectiveness of students on the game-based learning system and the major factors affecting their learning. A questionnaire survey was used to understand the students- attitudes towards game-based learning. The results showed that the game-based learning system can enhance students- learning, but the gender of students and their habits in using the Internet have no significant impact on learning. Game experience has a significant impact on students- learning, and the higher the experience value the better the effectiveness of their learning. The results of questionnaire survey also revealed that the system can increase students- motivation and interest in learning "World Geography".

Keywords: Game-based learning, situated learning, role playing, learning effectiveness, learning motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
2620 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
2619 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266