Search results for: structural damage detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3096

Search results for: structural damage detection

2826 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
2825 Gradual Shot Boundary Detection and Classification Based on Fractal Analysis

Authors: Zeinab Zeinalpour-Tabrizi, Faeze Asdaghi, Mahmooh Fathy, Mohammad Reza Jahed-Motlagh

Abstract:

Shot boundary detection is a fundamental step for the organization of large video data. In this paper, we propose a new method for video gradual shots detection and classification, using advantages of fractal analysis and AIS-based classifier. Proposed features are “vertical intercept" and “fractal dimension" of each frame of videos which are computed using Fourier transform coefficients. We also used a classifier based on Clonal Selection Algorithm. We have carried out our solution and assessed it according to the TRECVID2006 benchmark dataset.

Keywords: shot boundary detection, gradual shots, fractal analysis, artificial immune system, choose Clooney.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
2824 Fake Account Detection in Twitter Based on Minimum Weighted Feature set

Authors: Ahmed El Azab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting the fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, and then the determined factors are applied using different classification techniques. A comparison of the results of these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent researches in the same area; this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts; moreover, the study can be applied on different social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: Fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5838
2823 Fingerprint on Ballistic after Shooting

Authors: Narong Kulnides

Abstract:

This research involved fingerprints on ballistics after shooting. Two objectives of research were as follow; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that

  1. Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times.
  2. After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively.

Keywords: Ballistic, Fingerprint, Shooting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
2822 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
2821 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques

Authors: H. Elbehiery, A. Hefnawy, M. Elewa

Abstract:

Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.

Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6639
2820 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2819 Seismic Vulnerability Mitigation of Non-Engineered Buildings

Authors: Muhammad Tariq A. Chaudhary

Abstract:

The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centers and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, unreinforced masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.

Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
2818 Advanced Polymorphic Techniques

Authors: Philippe Beaucamps

Abstract:

Nowadays viruses use polymorphic techniques to mutate their code on each replication, thus evading detection by antiviruses. However detection by emulation can defeat simple polymorphism: thus metamorphic techniques are used which thoroughly change the viral code, even after decryption. We briefly detail this evolution of virus protection techniques against detection and then study the METAPHOR virus, today's most advanced metamorphic virus.

Keywords: Computer virus, Viral mutation, Polymorphism, Meta¬morphism, MetaPHOR, Virus history, Obfuscation, Viral genetic techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
2817 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
2816 A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images

Authors: H. Dujmic, V. Papic, H. Turic

Abstract:

The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method.

Keywords: Landscape surveillance, mean shift algorithm, image segmentation, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
2815 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2814 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr

Abstract:

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Keywords: Face detection, skin color segmentation, self-organizingmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
2813 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
2812 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: Neural networks, motion detection, signature detection, convolutional neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
2811 Highly Efficient Silicon Photomultiplier for Positron Emission Tomography Application

Authors: Fei Sun, Ning Duan, Guo-Qiang Lo

Abstract:

A silicon photomultiplier (SiPM) was designed, fabricated and characterized. The SiPM was based on SACM (Separation of Absorption, Charge and Multiplication) structure, which was optimized for blue light detection in application of positron emission tomography (PET). The achieved SiPM array has a high geometric fill factor of 64% and a low breakdown voltage of about 22V, while the temperature dependence of breakdown voltage is only 17mV/°C. The gain and photon detection efficiency of the device achieved were also measured under illumination of light at 405nm and 460nm wavelengths. The gain of the device is in the order of 106. The photon detection efficiency up to 60% has been observed under 1.8V overvoltage.

Keywords: Photon Detection Efficiency, Positron Emission Tomography, Silicon Photomultiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
2810 Distributed Detection and Optimal Traffic-blocking of Network Worms

Authors: Zoran Nikoloski, Narsingh Deo, Ludek Kucera

Abstract:

Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.

Keywords: Network worms, distributed detection, optimaltraffic-blocking, individual-based simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
2809 Structural Performance of a Timber-Concrete Bridge Prototype

Authors: Pedro Gutemberg de Alcântara Segundinho, José Antonio Matthiesen, Marcelo Rodrigo Carreira

Abstract:

Timber-concrete structures were recently introduced in Brazil as a viable option for bridge construction on side roads. Binding between timber and concrete is fundamentally important to assure the rigidity and performance of this structural system. The objective of this study was to assess the structural performance of a timber-concrete bridge prototype with width of 170cm and span of 400cm, whose binding among timber beams and concrete slabs was made with metal pins, obtained from CA 50 construction steel bars of 12.5mm diameter. It was possible to conclude, from the results obtained experimentally in laboratory, that the timber-concrete bridge prototype showed a good structural performance. This structural system provides an economical, rapid implementation solution, which may be used on side roads, favoring regional integration and agricultural production flow.

Keywords: Binding, bridge prototype, timber and concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
2808 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: Color overlapping windows, image stitching, leukocyte detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2807 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2806 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement

Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta

Abstract:

Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.

Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
2805 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
2804 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
2803 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.

Keywords: Fire, Normal strength concrete, Rehabilitation, Reinforced concrete beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
2802 Motion-Based Detection and Tracking of Multiple Pedestrians

Authors: A. Harras, A. Tsuji, K. Terada

Abstract:

Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.

Keywords: Automatic detection, tracking, pedestrians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
2801 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2800 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: Diabetic retinopathy, microaneurysm, Naïve Bayes classifier, SVM classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6106
2799 Face Tracking using a Polling Strategy

Authors: Rodrigo Montufar-Chaveznava

Abstract:

The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.

Keywords: Tracking, face detection, image processing, colorspaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2798 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: Biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2797 A New Fast Skin Color Detection Technique

Authors: Tarek M. Mahmoud

Abstract:

Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.

Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4004