Search results for: Francisco J. Real
1948 Dam Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran
Authors: Ali Heidari
Abstract:
This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez Dam located in the Dez Rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez Dam operation data show that in one of the best flood control records, 17% of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.
Keywords: Dam operation, flood control criteria, Dez Dam, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3861947 Automatic Real-Patient Medical Data De-Identification for Research Purposes
Authors: Petr Vcelak, Jana Kleckova
Abstract:
Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441946 Virtual E-Medic: A Cloud Based Medical Aid
Authors: Madiajagan Muthaiyan, Neha Goel, Deepti Sunder Prakash
Abstract:
This paper discusses about an intelligent system to be installed in ambulances providing professional support to the paramedics on board. A video conferencing device over mobile 4G services enables specialists virtually attending the patient being transferred to the hospital. The data centre holds detailed databases on the patients past medical history and hospitals with the specialists. It also hosts various software modules that compute the shortest traffic –less path to the closest hospital with the required facilities, on inputting the symptoms of the patient, on a real time basis.Keywords: 4G mobile services, cloud computing, data centre, intelligent system, optimization, real time traffic reporting, SaaS, video conferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741945 Methodology of Realization for Supervisor and Simulator Dedicated to a Semiconductor Research and Production Factory
Authors: Hanane Ondella, Pierre Ladet, David Ferrand, Pat Sloan
Abstract:
In the micro and nano-technology industry, the «clean-rooms» dedicated to manufacturing chip, are equipped with the most sophisticated equipment-tools. There use a large number of resources in according to strict specifications for an optimum working and result. The distribution of «utilities» to the production is assured by teams who use a supervision tool. The studies show the interest to control the various parameters of production or/and distribution, in real time, through a reliable and effective supervision tool. This document looks at a large part of the functions that the supervisor must assure, with complementary functionalities to help the diagnosis and simulation that prove very useful in our case where the supervised installations are complexed and in constant evolution.Keywords: Control-Command, evolution, non regression, performances, real time, simulation, supervision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601944 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data
Keywords: Rule induction, decision table, missing data, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641943 Development of Reliable Web-Based Laboratories for Developing Countries
Authors: Teyana S. Sapula, Damian D. Haule
Abstract:
In online context, the design and implementation of effective remote laboratories environment is highly challenging on account of hardware and software needs. This paper presents the remote laboratory software framework modified from ilab shared architecture (ISA). The ISA is a framework which enables students to remotely acccess and control experimental hardware using internet infrastructure. The need for remote laboratories came after experiencing problems imposed by traditional laboratories. Among them are: the high cost of laboratory equipment, scarcity of space, scarcity of technical personnel along with the restricted university budget creates a significant bottleneck on building required laboratory experiments. The solution to these problems is to build web-accessible laboratories. Remote laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. Recently, many universities and other educational institutions especially in third world countries rely on simulations because they do not afford the experimental equipment they require to their students. Remote laboratories enable users to get real data from real-time hand-on experiments. To implement many remote laboratories, the system architecture should be flexible, understandable and easy to implement, so that different laboratories with different hardware can be deployed easily. The modifications were made to enable developers to add more equipment in ISA framework and to attract the new developers to develop many online laboratories.Keywords: Batched, ISA, labserver, servicebroker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14291942 Angles of Arrival Estimation with Unitary Partial Propagator
Authors: Youssef Khmou, Said Safi
Abstract:
In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem. Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA).
Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.
Keywords: DOA, Uniform Linear Array, Narrowband, Propagator, Real valued transformation, Subspace, Unitary Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22841941 Delay Specific Investigations on QoS Scheduling Schemes for Real-Time Traffic in Packet Switched Networks
Authors: P.S.Prakash, S.Selvan
Abstract:
Packet switched data network like Internet, which has traditionally supported throughput sensitive applications such as email and file transfer, is increasingly supporting delay-sensitive multimedia applications such as interactive video. These delaysensitive applications would often rather sacrifice some throughput for better delay. Unfortunately, the current packet switched network does not offer choices, but instead provides monolithic best-effort service to all applications. This paper evaluates Class Based Queuing (CBQ), Coordinated Earliest Deadline First (CEDF), Weighted Switch Deficit Round Robin (WSDRR) and RED-Boston scheduling schemes that is sensitive to delay bound expectations for variety of real time applications and an enhancement of WSDRR is proposed.Keywords: QoS, Delay-sensitive, Queuing delay, Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261940 Optimization Based Obstacle Avoidance
Authors: R. Dariani, S. Schmidt, R. Kasper
Abstract:
Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.
Keywords: Autonomous driving, Obstacle avoidance, Optimal control, Path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30081939 Gene Expressions Associated with Ultrastructural Changes in Vascular Endothelium of Atherosclerotic Lesion
Authors: M. Maimunah, G.A. Froemming, H. Nawawi, M.I. Nafeeza, O. Effat, M.R. Rohayu Izanwati, M.S. Mohamed Saifulaman
Abstract:
Attachment of the circulating monocytes to the endothelium is the earliest detectable events during formation of atherosclerosis. The adhesion molecules, chemokines and matrix proteases genes were identified to be expressed in atherogenesis. Expressions of these genes may influence structural integrity of the luminal endothelium. The aim of this study is to relate changes in the ultrastructural morphology of the aortic luminal surface and gene expressions of the endothelial surface, chemokine and MMP-12 in normal and hypercholesterolemic rabbits. Luminal endothelial surface from rabbit aortic tissue was examined by scanning electron microscopy (SEM) using low vacuum mode to ascertain ultrastructural changes in development of atherosclerotic lesion. Gene expression of adhesion molecules, MCP-1 and MMP-12 were studied by Real-time PCR. Ultrastructural observations of the aortic luminal surface exhibited changes from normal regular smooth intact endothelium to irregular luminal surface including marked globular appearance and ruptures of the membrane layer. Real-time PCR demonstrated differentially expressed of studied genes in atherosclerotic tissues. The appearance of ultrastructural changes in aortic tissue of hypercholesterolemic rabbits is suggested to have relation with underlying changes of endothelial surface molecules, chemokine and MMP-12 gene expressions.Keywords: Ultrastructure of luminal endothelial surface, Macrophage metalloelastase (MMP-12), Real-time PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541938 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49901937 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model
Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat
Abstract:
In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20181936 Valuing Environmental Impact of Air Pollution in Moscow with Hedonic Prices
Authors: V. Komarova
Abstract:
The main purpose of this research is the calculation of implicit prices of the environmental level of air quality in the city of Moscow on the basis of housing property prices. The database used contains records of approximately 20 thousand apartments and has been provided by a leading real estate agency operating in Russia. The explanatory variables include physical characteristics of the houses, environmental (industry emissions), neighbourhood sociodemographic and geographic data: GPS coordinates of each house. The hedonic regression results for ecological variables show «negative» prices while increasing the level of air contamination from such substances as carbon monoxide, nitrogen dioxide, sulphur dioxide, and particles (CO, NO2, SO2, TSP). The marginal willingness to pay for higher environmental quality is presented for linear and log-log models.
Keywords: Air pollution, environment, hedonic prices, real estate, willingness to pay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731935 A Probabilistic Reinforcement-Based Approach to Conceptualization
Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi
Abstract:
Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.
Keywords: Concept learning, probabilistic decision making, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271934 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.
Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5191933 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- and Natural Gas-Fueled Buses
Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li
Abstract:
To reflect the influence of after-treatment system retrofit and natural gas-fueled vehicle replace on exhaust emissions emitted by urban buses, a portable emission measurement system (PEMS) was employed herein to conduct real driving emission measurements. This study investigated the differences in particle number (PN), particle mass (PM), and nitrogen oxides (NOx) emissions from a China IV diesel bus retrofitted by catalyzed diesel particulate filter (CDPF), a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control related to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.
Keywords: CDPF, diesel, natural gas, real-world emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4751932 The Visualizer for Real-Time Analysis of Internet Trends
Authors: Radek Malinský, Ivan Jelínek
Abstract:
The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. This kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with a different structure of individual web sites. It is therefore difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.Keywords: Trend, visualizer, web analysis, web 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411931 Accurate Visualization of Graphs of Functions of Two Real Variables
Authors: Zeitoun D. G., Thierry Dana-Picard
Abstract:
The study of a real function of two real variables can be supported by visualization using a Computer Algebra System (CAS). One type of constraints of the system is due to the algorithms implemented, yielding continuous approximations of the given function by interpolation. This often masks discontinuities of the function and can provide strange plots, not compatible with the mathematics. In recent years, point based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of complex surfaces. In this paper we present different artifacts created by mesh surfaces near discontinuities and propose a point based method that controls and reduces these artifacts. A least squares penalty method for an automatic generation of the mesh that controls the behavior of the chosen function is presented. The special feature of this method is the ability to improve the accuracy of the surface visualization near a set of interior points where the function may be discontinuous. The present method is formulated as a minimax problem and the non uniform mesh is generated using an iterative algorithm. Results show that for large poorly conditioned matrices, the new algorithm gives more accurate results than the classical preconditioned conjugate algorithm.
Keywords: Function singularities, mesh generation, point allocation, visualization, collocation least squares method, Augmented Lagrangian method, Uzawa's Algorithm, Preconditioned Conjugate Gradien
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17081930 A Generic e-Tutor for Graphical Problems
Authors: B.W. Field
Abstract:
For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.
Keywords: CAL, graphics, modeling, structural distillation, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14161929 Object Recognition on Horse Riding Simulator System
Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim
Abstract:
In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.
Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20891928 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081927 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Viktor M. Denisov
Abstract:
A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.Keywords: Guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481926 The Methodology of Out-Migration in Georgia
Authors: Shorena Tsiklauri
Abstract:
Out-migration is an important issue for Georgia as well as since independence has loosed due to emigration one fifth of its population. During Soviet time out-migration from USSR was almost impossible and one of the most important instruments in regulating population movement within the Soviet Union was the system of compulsory residential registrations, so-called “propiska”. Since independent here was not any regulation for migration from Georgia. The majorities of Georgian migrants go abroad by tourist visa and then overstay, becoming the irregular labor migrants. The official statistics on migration published for this period was based on the administrative system of population registration, were insignificant in terms of numbers and did not represent the real scope of these migration movements. This paper discusses the data quality and methodology of migration statistics in Georgia and we are going to answer the questions: what is the real reason of increasing immigration flows according to the official numbers since 2000s?Keywords: Data quality, Georgia, methodology, out-migration, policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19121925 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921924 Eye Location Based on Structure Feature for Driver Fatigue Monitoring
Authors: Qiong Wang
Abstract:
One of the most important problems to solve is eye location for a driver fatigue monitoring system. This paper presents an efficient method to achieve fast and accurate eye location in grey level images obtained in the real-word driving conditions. The structure of eye region is used as a robust cue to find possible eye pairs. Candidates of eye pair at different scales are selected by finding regions which roughly match with the binary eye pair template. To obtain real one, all the eye pair candidates are then verified by using support vector machines. Finally, eyes are precisely located by using binary vertical projection and eye classifier in eye pair images. The proposed method is robust to deal with illumination changes, moderate rotations, glasses wearing and different eye states. Experimental results demonstrate its effectiveness.Keywords: eye location, structure feature, driver fatiguemonitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991923 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: Brain-computer interface, BCI, electroencephalography, EEG, finger motion decoding, independent component analysis, pseudo-real-time motion decoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5991922 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.
Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29051921 Virtual or Virtually U: Educational Institutions in Second Life
Authors: Nancy Jennings, Chris Collins
Abstract:
Educational institutions are increasingly exploring the affordances of 3D virtual worlds for instruction and research, but few studies have been done to document current practices and uses of this emerging technology. This observational survey examines the virtual presences of 170 accredited educational institutions found in one such 3D virtual world called Second Life®, created by San- Francisco based Linden Lab®. The study focuses on what educational institutions look like in this virtual environment, the types of spaces educational institutions are creating or simulating, and what types of activities are being conducted.
Keywords: educational technology, emerging technology, metaverse, Second Life, virtual worlds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881920 Exploring the Challenging Issues with Synchrophasor Technology Deployments in Electric Power Grids
Authors: Emmanuel U. Oleka, Anil Khanal, Ali R. Osareh, Gary L. Lebby
Abstract:
Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and there are still much more to be achieved. For instance, real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring, and control using synchrophasor technology.Keywords: Electric power grid, Grid Visualization, Phasor Measurement Unit, Synchrophasor Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19101919 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems
Authors: Paul B. Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan
Abstract:
As notifications become more common through mobile devices, it is important to understand the impact of wearable devices for improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer simulated petrochemical system. The key research question was to determine how using information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.
Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575