Search results for: statistical process control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9481

Search results for: statistical process control

9481 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T. Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: Rice polished cylinder, statistical process control, control charts, process capability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
9480 Monitoring Patents Using the Statistical Process Control

Authors: Stephanie Russo Fabris, Edmara Thays Neres Menezes, Ruirogeres dos Santos Cruz, Lucio Leonardo Siqueira Santos, Suzana Leitao Russo

Abstract:

The statistical process control (SPC) is one of the most powerful tools developed to assist ineffective control of quality, involves collecting, organizing and interpreting data during production. This article aims to show how the use of CEP industries can control and continuously improve product quality through monitoring of production that can detect deviations of parameters representing the process by reducing the amount of off-specification products and thus the costs of production. This study aimed to conduct a technological forecasting in order to characterize the research being done related to the CEP. The survey was conducted in the databases Spacenet, WIPO and the National Institute of Industrial Property (INPI). Among the largest are the United States depositors and deposits via PCT, the classification section that was presented in greater abundance to F.

Keywords: Statistical Process Control, Industries

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
9479 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: Multivariate control chart, statistical process control, one-class classification method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
9478 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: Fuzzy goal programming, control charts, process capability, tablet optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
9477 Fault Detection of Drinking Water Treatment Process Using PCA and Hotelling's T2 Chart

Authors: Joval P George, Dr. Zheng Chen, Philip Shaw

Abstract:

This paper deals with the application of Principal Component Analysis (PCA) and the Hotelling-s T2 Chart, using data collected from a drinking water treatment process. PCA is applied primarily for the dimensional reduction of the collected data. The Hotelling-s T2 control chart was used for the fault detection of the process. The data was taken from a United Utilities Multistage Water Treatment Works downloaded from an Integrated Program Management (IPM) dashboard system. The analysis of the results show that Multivariate Statistical Process Control (MSPC) techniques such as PCA, and control charts such as Hotelling-s T2, can be effectively applied for the early fault detection of continuous multivariable processes such as Drinking Water Treatment. The software package SIMCA-P was used to develop the MSPC models and Hotelling-s T2 Chart from the collected data.

Keywords: Principal component analysis, hotelling's t2 chart, multivariate statistical process control, drinking water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
9476 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

Authors: Y. Areepong

Abstract:

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
9475 A Multivariate Moving Average Control Chart for Photovoltaic Processes

Authors: Chunchom Pongchavalit

Abstract:

For the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control.

Keywords: The multivariate moving average control chart, Photovoltaic processes control, Multivariate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
9474 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
9473 The Synthetic T2 Quality Control Chart and its Multi-Objective Optimization

Authors: Francisco Aparisi, Marco A. de Luna

Abstract:

In some real applications of Statistical Process Control it is necessary to design a control chart to not detect small process shifts, but keeping a good performance to detect moderate and large shifts in the quality. In this work we develop a new quality control chart, the synthetic T2 control chart, that can be designed to cope with this objective. A multi-objective optimization is carried out employing Genetic Algorithms, finding the Pareto-optimal front of non-dominated solutions for this optimization problem.

Keywords: Multi-objective optimization, Quality Control, SPC, Synthetic T2 control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
9472 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: Acceptable quality level, statistical quality control, control charts, process charts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
9471 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
9470 A Practical Approach for Testing the Process Quality

Authors: Mou-Yuan Liao, Chien-Wei Wu, Chien-Hua Lin

Abstract:

Process capability index Cpk is the most widely used index in making managerial decisions since it provides bounds on the process yield for normally distributed processes. However, existent methods for assessing process performance which constructed by statistical inference may unfortunately lead to fine results, because uncertainties exist in most real-world applications. Thus, this study adopts fuzzy inference to deal with testing of Cpk . A brief score is obtained for assessing a supplier’s process instead of a severe evaluation.

Keywords: Process capability analysis, quality control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
9469 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
9468 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: Hierarchical process control, knowledge discovery from databases, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
9467 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
9466 A CUSUM Control Chart to Monitor Wafer Quality

Authors: Sheng-Shu Cheng, Fong-Jung Yu

Abstract:

C-control chart assumes that process nonconformities follow a Poisson distribution. In actuality, however, this Poisson distribution does not always occur. A process control for semiconductor based on a Poisson distribution always underestimates the true average amount of nonconformities and the process variance. Quality is described more accurately if a compound Poisson process is used for process control at this time. A cumulative sum (CUSUM) control chart is much better than a C control chart when a small shift will be detected. This study calculates one-sided CUSUM ARLs using a Markov chain approach to construct a CUSUM control chart with an underlying Poisson-Gamma compound distribution for the failure mechanism. Moreover, an actual data set from a wafer plant is used to demonstrate the operation of the proposed model. The results show that a CUSUM control chart realizes significantly better performance than EWMA.

Keywords: Nonconformities, Compound Poisson distribution, CUSUM control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
9465 Nonparametric Control Chart Using Density Weighted Support Vector Data Description

Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek

Abstract:

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
9464 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process

Authors: Petia Georgieva, Sebastião Feyo de Azevedo

Abstract:

This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.

Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
9463 Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim

Abstract:

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.

Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
9462 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
9461 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix

Authors: Pham Luu Trung Duong, Moonyong Lee

Abstract:

To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.

Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
9460 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation

Authors: Theodosia Prodromou

Abstract:

The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.

Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
9459 An Evaluation of Average Run Length of MaxEWMA and MaxGWMA Control Charts

Authors: S. Phanyaem

Abstract:

Exponentially weighted moving average control chart (EWMA) is a popular chart used for detecting shift in the mean of parameter of distributions in quality control. The objective of this paper is to compare the efficiency of control chart to detect an increases in the mean of a process. In particular, we compared the Maximum Exponentially Weighted Moving Average (MaxEWMA) and Maximum Generally Weighted Moving Average (MaxGWMA) control charts when the observations are Exponential distribution. The criteria for evaluate the performance of control chart is called, the Average Run Length (ARL). The result of comparison show that in the case of process is small sample size, the MaxEWMA control chart is more efficiency to detect shift in the process mean than MaxGWMA control chart. For the case of large sample size, the MaxEWMA control chart is more sensitive to detect small shift in the process mean than MaxGWMA control chart, and when the process is a large shift in mean, the MaxGWMA control chart is more sensitive to detect mean shift than MaxEWMA control chart.

Keywords: Maximum Exponentially Weighted Moving Average, Maximum General Weighted Moving Average, Average Run Length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
9458 Control-flow Complexity Measurement of Processes and Weyuker's Properties

Authors: Jorge Cardoso

Abstract:

Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.

Keywords: Business process measurement, workflow, complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
9457 Advance in Monitoring and Process Control of Surface Roughness

Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak

Abstract:

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
9456 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei

Abstract:

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.

Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
9455 A Quantitative Tool for Analyze Process Design

Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río

Abstract:

Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.

Keywords: Characteristics matrix, covariance structure analysis, LISREL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
9454 Asymmetric Tukey’s Control Chart Robust to Skew and Non-Skew Process Observation

Authors: S. Sukparungsee

Abstract:

In reality, the process observations are away from the assumption that are normal distributed. The observations could be skew distributions which should use an asymmetric chart rather than symmetric chart. Consequently, this research aim to study the robustness of the asymmetric Tukey’s control chart for skew and non-skew distributions as Lognormal and Laplace distributions. Furthermore, the performances in detecting of a change in parameter of asymmetric and symmetric Tukey’s control charts are compared by Average ARL (AARL). The results found that the asymmetric performs better than symmetric Tukey’s control chart for both cases of skew and non-skew process observation.

Keywords: Asymmetric control limit, average of average run length, Tukey’s control chart and skew distributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
9453 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
9452 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012