Search results for: Resources Discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1465

Search results for: Resources Discovery

1465 An Improved Resource Discovery Approach Using P2P Model for Condor: A Grid Middleware

Authors: Anju Sharma, Seema Bawa

Abstract:

Resource Discovery in Grids is critical for efficient resource allocation and management. Heterogeneous nature and dynamic availability of resources make resource discovery a challenging task. As numbers of nodes are increasing from tens to thousands, scalability is essentially desired. Peer-to-Peer (P2P) techniques, on the other hand, provide effective implementation of scalable services and applications. In this paper we propose a model for resource discovery in Condor Middleware by using the four axis framework defined in P2P approach. The proposed model enhances Condor to incorporate functionality of a P2P system, thus aim to make Condor more scalable, flexible, reliable and robust.

Keywords: Condor Middleware, Grid Computing, P2P, Resource Discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1464 Approximate Frequent Pattern Discovery Over Data Stream

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop

Abstract:

Frequent pattern discovery over data stream is a hard problem because a continuously generated nature of stream does not allow a revisit on each data element. Furthermore, pattern discovery process must be fast to produce timely results. Based on these requirements, we propose an approximate approach to tackle the problem of discovering frequent patterns over continuous stream. Our approximation algorithm is intended to be applied to process a stream prior to the pattern discovery process. The results of approximate frequent pattern discovery have been reported in the paper.

Keywords: Frequent pattern discovery, Approximate algorithm, Data stream analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
1463 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks

Authors: O. A. Rahmeh, P. Johnson, S. Lehmann

Abstract:

Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.

Keywords: Complex networks, grid networks, load-balancing, random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1462 Goal-Based Request Cloud Resource Broker in Medical Application

Authors: Mohamad Izuddin Nordin, Azween Abdullah, Mahamat Issa Hassan

Abstract:

In this paper, cloud resource broker using goalbased request in medical application is proposed. To handle recent huge production of digital images and data in medical informatics application, the cloud resource broker could be used by medical practitioner for proper process in discovering and selecting correct information and application. This paper summarizes several reviewed articles to relate medical informatics application with current broker technology and presents a research work in applying goal-based request in cloud resource broker to optimize the use of resources in cloud environment. The objective of proposing a new kind of resource broker is to enhance the current resource scheduling, discovery, and selection procedures. We believed that it could help to maximize resources allocation in medical informatics application.

Keywords: Broker, Cloud Computing, Medical Informatics, Resources Discovery, Resource Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
1461 Resource Discovery in Web-Services Based Grids

Authors: Damandeep Kaur, Jyotsna Sengupta

Abstract:

A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.

Keywords: Web services, resource discovery, grid computing, OGSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1460 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: Hierarchical process control, knowledge discovery from databases, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1459 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Authors: Sameh H. Ghwanmeh

Abstract:

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Keywords: Education, networking, performance, e-content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1458 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters

Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua

Abstract:

This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.

Keywords: Web service, discovery, semantic, SOA, registry, UDDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1457 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
1456 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management

Authors: M. Moslehpour, S. Khorsandi

Abstract:

As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.

Keywords: NDP, SEND, CGA, modifier, malicious node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
1455 Genetic Programming Approach to Hierarchical Production Rule Discovery

Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj

Abstract:

Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1454 Discovery of Production Rules with Fuzzy Hierarchy

Authors: Fadl M. Ba-Alwi, Kamal K. Bharadwaj

Abstract:

In this paper a novel algorithm is proposed that integrates the process of fuzzy hierarchy generation and rule discovery for automated discovery of Production Rules with Fuzzy Hierarchy (PRFH) in large databases.A concept of frequency matrix (Freq) introduced to summarize large database that helps in minimizing the number of database accesses, identification and removal of irrelevant attribute values and weak classes during the fuzzy hierarchy generation.Experimental results have established the effectiveness of the proposed algorithm.

Keywords: Data Mining, Degree of subsumption, Freq matrix, Fuzzy hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
1453 Learning Undergraduate Mathematics in a Discovery-Enriched Approach

Authors: Kam-moon Liu, Kwok-chi Chim, Kwok-wai Chung, Daniel Wing-cheong Ho

Abstract:

Students often adopt routine practicing as learning strategy for mathematics. The reason is they are often bound and trained to solving conventional-typed questions in Mathematics in high school. This will be problematic if students further consolidate this practice in university. Therefore, the Department of Mathematics emphasized and integrated the Discovery-enriched approach in the undergraduate curriculum. This paper presents the details of implementing the Discovery-enriched Curriculum by providing adequate platform for project-learning, expertise for guidance and internship opportunities for students majoring in Mathematics. The Department also provided project-learning opportunities to mathematics courses targeted for students majoring in other science or engineering disciplines. The outcome is promising: the research ability and problem solving skills of students are enhanced.

Keywords: Discovery-enriched curriculum, higher education, mathematics education, project learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
1452 FCA-based Conceptual Knowledge Discovery in Folksonomy

Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang

Abstract:

The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.

Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1451 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, Modifier, Malicious node, Self-Computing, Distributed-Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1450 Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation

Authors: Kee-Leong Tan, Karyn Wei-Ju Khoo, Hui-Na Chua

Abstract:

Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

Keywords: Service Oriented Architecture (SOA), Web service, Service discovery, registry, UDDI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1449 A Hybrid Approach for Quantification of Novelty in Rule Discovery

Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar

Abstract:

Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.

Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1448 Fortification for P2P Grid Computing Used for Resource Discovery

Authors: Bhawneet Singh Marwah, Rishabh Rastogi, Shinon Kochar

Abstract:

Grid computing provides an effective infrastructure for massive computation among flexible and dynamic collection of individual system for resource discovery. The major challenge for grid computing is to prevent breaches and secure the data from trespassers. To overcome such conflicts a semantic approach can be designed which will filter the access requests of peers by checking the resource description specifying the data and the metadata as factual statements. Between every node in the grid a semantic firewall as a middleware will be present The intruder will be required to present an application specifying there needs to the firewall and hence accordingly the system will grant or deny the application request.

Keywords: Grid Computing, Metadata, Semantic, Peers, Resource Discovery, Firewall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1447 NEAR: Visualizing Information Relations in Multimedia Repository A•VI•RE

Authors: Qian, C. Z., Chen, V. Y., R. F. Woodbury

Abstract:

This paper describes the NEAR (Navigating Exhibitions, Annotations and Resources) panel, a novel interactive visualization technique designed to help people navigate and interpret groups of resources, exhibitions and annotations by revealing hidden relations such as similarities and references. NEAR is implemented on A•VI•RE, an extended online information repository. A•VI•RE supports a semi-structured collection of exhibitions containing various resources and annotations. Users are encouraged to contribute, share, annotate and interpret resources in the system by building their own exhibitions and annotations. However, it is hard to navigate smoothly and efficiently in A•VI•RE because of its high capacity and complexity. We present a visual panel that implements new navigation and communication approaches that support discovery of implied relations. By quickly scanning and interacting with NEAR, users can see not only implied relations but also potential connections among different data elements. NEAR was tested by several users in the A•VI•RE system and shown to be a supportive navigation tool. In the paper, we further analyze the design, report the evaluation and consider its usage in other applications.

Keywords: measure similarity, trace reference, inherentrelation, information visualization, online multimedia repository

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1446 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata

Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi

Abstract:

Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.

Keywords: Resource discovery, learning automata, neural network, economic policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
1445 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: Actionable pattern discovery, education, emotion, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
1444 Intrapreneurship Discovery: Standard Strategy to Boost Innovation inside Companies

Authors: Chiara Mansanta, Daniela Sani

Abstract:

This paper studies the concept of intrapreneurship discovery for innovation and technology development related to the manufacturing industries set up in the center of Italy, in Marche Region. The study underlined the key drivers of the innovation process and the main factors that influence innovation. Starting from a literature study on open innovation, this paper examines the role of human capital to support company’s development. The empirical part of the study is based on a survey to 151 manufacturing companies that represent the 34% of that universe at the regional level. The survey underlined the main KPI’s that influence companies in their decision processes; then tools for these decision processes are presented.

Keywords: Business model, decision making, intrapreneurship discovery, open innovation, standard methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1443 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation

Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza

Abstract:

Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.

Keywords: Grid computing, grid information service, P2P, resource discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1442 An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das

Abstract:

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1441 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
1440 Novelty as a Measure of Interestingness in Knowledge Discovery

Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar

Abstract:

Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules leads to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach based on both objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules (knowledge). We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are promising.

Keywords: Knowledge Discovery in Databases (KDD), Interestingness, Subjective Measures, Novelty Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1439 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs

Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas

Abstract:

In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).

Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130
1438 Social Entrepreneurship: The Role of Intangible Resources in the Resource Scarce Environment

Authors: Seham Ghalwash, Ayman Ismail

Abstract:

Resources are crucial to the development and sustainability of social ventures. Thus, resources and resources scarcity are central concepts to study and understand the phenomenon of social entrepreneurship specially in developing countries where resources are very limited. Social entrepreneurs in developing countries face bigger challenges because financial resources are scarce. The empirical findings in this paper suggest that social enterprises in poor resources environments survive and grow because of the existence of social and human capitals in which they serve as prerequisites for the physical resources required for sustainability. This research paper explores how governments and policymakers might take nativities to support and foster social entrepreneurial activities in a resource-constraints environment reflecting on the experiences of Egypt-based social enterprises.

Keywords: Social ventures, financial constraints, intangible resources, scarce resources, legitimacy, developing countries, Egypt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1437 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1436 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: Vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313