Search results for: Pima Indians diabetes dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 465

Search results for: Pima Indians diabetes dataset

465 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
464 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
463 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Authors: Zarita Zainuddin, Ong Pauline, C. Ardil

Abstract:

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
462 An Efficient Framework to Build Up Malware Dataset

Authors: Madihah Mohd Saudi, Zul Hilmi Abdullah

Abstract:

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

Keywords: Dataset, knowledge database discovery (KDD), malware, static and dynamic analyses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
461 Ornament as a Universal Language of Peace (Based On Comparative Analysis of Cultures of proto-Turkic Peoples and Indian Tribes of North America)

Authors: Zhamilya Boldykova, Assel Berdigulova

Abstract:

In this article, the authors reviewed and analyzed the survey materials similarities ornament proto-Turkic and northern Indians. The study examined the materials scientists - geneticists, archaeologists, anthropologists. Numerous studies of scientists from different directions once again prove the relevance of the topic. The authors approached the subject from an artistic side. The study authors have made the appropriate conclusions. This publication is based on the proceedings of the investigation.

Keywords: Ethnicity, Indians, Ornament, Proto-Turks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
460 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
459 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
458 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
457 Effects of Bay Leaves on Blood Glucose and Lipid Profiles on the Patients with Type 1 Diabetes

Authors: Abdulrahim Aljamal

Abstract:

Bay leaves have been shown to improve insulin function in vitro but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 1 diabetes. Methods: Fifty five people with type 1 diabetes were divided into two groups, 45 given capsules containing 3 g of bay leaves per day for 30 days and 10 given a placebo capsules. Results All the patients consumed bay leaves shows reduced serum glucose with significant decreases 27% after 30 d. Total cholesterol decreased, 21 %, after 30 days with larger decreases in low density lipoprotein (LDL) 24%. High density lipoprotein (HDL) increased 20% and Triglycerides also decreased 26%. There were no significant changes in the placebo group. Conclusion, this study demonstrates that consumption of bay leaves, 3 g/d for 30 days, decreases risk factors for diabetes and cardiovascular diseases and suggests that bay leaves may be beneficial for people with type 1 diabetes.

Keywords: bay leave, cholesterol, diabetes, triglycerides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
456 OHASD: The First On-Line Arabic Sentence Database Handwritten on Tablet PC

Authors: Randa I. M. Elanwar, Mohsen A. Rashwan, Samia A. Mashali

Abstract:

In this paper we present the first Arabic sentence dataset for on-line handwriting recognition written on tablet pc. The dataset is natural, simple and clear. Texts are sampled from daily newspapers. To collect naturally written handwriting, forms are dictated to writers. The current version of our dataset includes 154 paragraphs written by 48 writers. It contains more than 3800 words and more than 19,400 characters. Handwritten texts are mainly written by researchers from different research centers. In order to use this dataset in a recognition system word extraction is needed. In this paper a new word extraction technique based on the Arabic handwriting cursive nature is also presented. The technique is applied to this dataset and good results are obtained. The results can be considered as a bench mark for future research to be compared with.

Keywords: Arabic, Handwriting recognition, on-line dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
455 Feasibility of Risk Assessment for Type 2 Diabetes in Community Pharmacies Using Two Different Approaches: A Pilot Study in Thailand

Authors: Thitaporn Thoopputra, Tipaporn Pongmesa, Shuchuen Li

Abstract:

Aims: To evaluate the application of non-invasive diabetes risk assessment tool in community pharmacy setting. Methods: Thai diabetes risk score was applied to assess individuals at risk of developing type 2 diabetes. Interactive computer-based risk screening (IT) and paper-based risk screening (PT) tools were applied. Participants aged over 25 years with no known diabetes were recruited in six participating pharmacies. Results: A total of 187 clients, mean aged (+SD) was 48.6 (+10.9) years. 35% were at high risk. The mean value of willingness-to-pay for the service fee in IT group was significantly higher than PT group (p=0.013). No significant difference observed for the satisfaction between groups. Conclusions: Non-invasive risk assessment tool, whether paper-based or computerized-based can be applied in community pharmacy to support the enhancing role of pharmacists in chronic disease management. Long term follow up is needed to determine the impact of its application in clinical, humanistic and economic outcomes.

Keywords: Community pharmacy, intervention, prevention, risk assessment, type 2 diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
454 Categorical Clustering By Converting Associated Information

Authors: Dongmin Cai, Stephen S-T Yau

Abstract:

Lacking an inherent “natural" dissimilarity measure between objects in categorical dataset presents special difficulties in clustering analysis. However, each categorical attributes from a given dataset provides natural probability and information in the sense of Shannon. In this paper, we proposed a novel method which heuristically converts categorical attributes to numerical values by exploiting such associated information. We conduct an experimental study with real-life categorical dataset. The experiment demonstrates the effectiveness of our approach.

Keywords: Categorical, Clustering, Converting, Information

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
453 Arabic Word Semantic Similarity

Authors: Faaza A, Almarsoomi, James D, O'Shea, Zuhair A, Bandar, Keeley A, Crockett

Abstract:

This paper is concerned with the production of an Arabic word semantic similarity benchmark dataset. It is the first of its kind for Arabic which was particularly developed to assess the accuracy of word semantic similarity measurements. Semantic similarity is an essential component to numerous applications in fields such as natural language processing, artificial intelligence, linguistics, and psychology. Most of the reported work has been done for English. To the best of our knowledge, there is no word similarity measure developed specifically for Arabic. In this paper, an Arabic benchmark dataset of 70 word pairs is presented. New methods and best possible available techniques have been used in this study to produce the Arabic dataset. This includes selecting and creating materials, collecting human ratings from a representative sample of participants, and calculating the overall ratings. This dataset will make a substantial contribution to future work in the field of Arabic WSS and hopefully it will be considered as a reference basis from which to evaluate and compare different methodologies in the field.

Keywords: Arabic categories, benchmark dataset, semantic similarity, word pair, stimulus Arabic words

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
452 Robotic Arm Allowing a Diabetic Quadriplegic Patient to Self-Administer Insulin

Authors: L. Parisi

Abstract:

A method which allows a diabetic quadriplegic patient that has had four limb amputations (above the knee and elbow) to self-administer injections of insulin has been designed. The aim of this research project is to improve a quadriplegic patient’s selfmanagement, affected by diabetes, by designing a suitable device for self-administering insulin. The quadriplegic patient affected by diabetes has to be able to selfadminister insulin safely and independently to guarantee stable healthy conditions. The device also should be designed to adapt to a number of different varying personal characteristics such as height and body weight.

Keywords: Robotics, diabetes, quadriplegia, self-management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
451 Comparison of Statins Dose Intensity on HbA1c Control in Outpatients with Type 2 Diabetes: A Prospective Cohort Study

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Ahmed A. Khamis, Abeer Kharshid, Nor Azizah Aziz

Abstract:

The effect of statins dose intensity (SDI) on glycemic control in patients with existing diabetes is unclear. Also, there are many contradictory findings were reported in the literature; thus, it is limiting the possibility to draw conclusions. This project was designed to compare the effect of SDI on glycated hemoglobin (HbA1c%) control in outpatients with Type 2 diabetes in the endocrine clinic at Hospital Pulau Pinang, Malaysia, between July 2015 and August 2016. A prospective cohort study was conducted, where records of 345 patients with Type 2 diabetes (Moderate-SDI group 289 patients and high-SDI cohort 56 patients) were reviewed to identify demographics and laboratory tests. The target of glycemic control (HbA1c < 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, and the results were presented as descriptive statistics. From 289 moderate-SDI cohorts with a mean age of 57.3 ± 12.4 years, only 86 (29.8%) cases were shown to have controlled glycemia, while there were 203 (70.2%) cases with uncontrolled glycemia with confidence interval (CI) of 95% (6.2–10.8). On the other hand, the high-SDI group of 56 patients with Type 2 diabetes with a mean age 57.7±12.4 years is distributed among 11 (19.6%) patients with controlled diabetes, and 45 (80.4%) of them had uncontrolled glycemia, CI: 95% (7.1–11.9). The study has demonstrated that the relative risk (RR) of uncontrolled glycemia in patients with Type 2 diabetes that used high-SDI is 1.15, and the excessive relative risk (ERR) is 15%. The absolute risk (AR) is 10.2%, and the number needed to harm (NNH) is 10. Outpatients with Type 2 diabetes who use high-SDI of statin have a higher risk of uncontrolled glycemia than outpatients who had been treated with a moderate-SDI.

Keywords: Cohort study, diabetes control, dose intensity, HbA1c, Malaysia, statin, Type 2 diabetes mellitus, uncontrolled glycemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
450 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity

Authors: M. Siosemarde, M. Byzedi

Abstract:

Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.

Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
449 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
448 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset

Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland

Abstract:

In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.

Keywords: feature selection, missing values, classification, clinical dataset, heart failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
447 Analysis of Palm Perspiration Effect with SVM for Diabetes in People

Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas

Abstract:

In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.

Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
446 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language

Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay

Abstract:

Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.

Keywords: Annotated Facial Expression Dataset, Sign Language Recognition, Gesture Recognition, Sequenced Facial Expression Dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
445 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
444 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy

Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo

Abstract:

Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.

Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
443 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
442 Evaluating Hurst Parameters and Fractal Dimensions of Surveyed Dataset of Tailings Dam Embankment

Authors: I. Yakubu, Y. Y. Ziggah, C. Yeboah

Abstract:

In the mining environment, tailings dam embankment is among the hazards and risk areas. The tailings dam embankment could fail and result to damages to facilities, human injuries or even fatalities. Periodic monitoring of the dam embankment is needed to help assess the safety of the tailings dam embankment. Artificial intelligence techniques such as fractals can be used to analyse the stability of the monitored dataset from survey measurement techniques. In this paper, the fractal dimension (D) was determined using D = 2-H. The Hurst parameters (H) of each monitored prism were determined by using a time domain of rescaled range programming in MATLAB software. The fractal dimensions of each monitored prism were determined based on the values of H. The results reveal that the values of the determined H were all within the threshold of 0 ≤ H ≤ 1 m. The smaller the H, the bigger the fractal dimension is. Fractal dimension values ranging from 1.359 x 10-4 m to 1.8843 x 10-3 m were obtained from the monitored prisms on the based on the tailing dam embankment dataset used. The ranges of values obtained indicate that the tailings dam embankment is stable.

Keywords: Hurst parameter, fractal dimension, tailings dam embankment, surveyed dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
441 Data Gathering and Analysis for Arabic Historical Documents

Authors: Ali Dulla

Abstract:

This paper introduces a new dataset (and the methodology used to generate it) based on a wide range of historical Arabic documents containing clean data simple and homogeneous-page layouts. The experiments are implemented on printed and handwritten documents obtained respectively from some important libraries such as Qatar Digital Library, the British Library and the Library of Congress. We have gathered and commented on 150 archival document images from different locations and time periods. It is based on different documents from the 17th-19th century. The dataset comprises differing page layouts and degradations that challenge text line segmentation methods. Ground truth is produced using the Aletheia tool by PRImA and stored in an XML representation, in the PAGE (Page Analysis and Ground truth Elements) format. The dataset presented will be easily available to researchers world-wide for research into the obstacles facing various historical Arabic documents such as geometric correction of historical Arabic documents.

Keywords: Dataset production, ground truth production, historical documents, arbitrary warping, geometric correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
440 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
439 Computational Methods in Official Statistics with an Example on Calculating and Predicting Diabetes Mellitus [DM] Prevalence in Different Age Groups within Australia in Future Years, in Light of the Aging Population

Authors: D. Hilton

Abstract:

An analysis of the Australian Diabetes Screening Study estimated undiagnosed diabetes mellitus [DM] prevalence in a high risk general practice based cohort. DM prevalence varied from 9.4% to 18.1% depending upon the diagnostic criteria utilised with age being a highly significant risk factor. Utilising the gold standard oral glucose tolerance test, the prevalence of DM was 22-23% in those aged >= 70 years and <15% in those aged 40-59 years. Opportunistic screening in Australian general practice potentially can identify many persons with undiagnosed type 2 DM. An Australian Bureau of Statistics document published three years ago, reported the highest rate of DM in men aged 65-74 years [19%] whereas the rate for women was highest in those over 75 years [13%]. If you consider that the Australian Bureau of Statistics report in 2007 found that 13% of the population was over 65 years of age and that this will increase to 23-25% by 2056 with a further projected increase to 25-28% by 2101, obviously this information has to be factored into the equation when age related diabetes prevalence predictions are calculated. This 10-15% proportional increase of elderly persons within the population demographics has dramatic implications for the estimated number of elderly persons with DM in these age groupings. Computational methodology showing the age related demographic changes reported in these official statistical documents will be done showing estimates for 2056 and 2101 for different age groups. This has relevance for future diabetes prevalence rates and shows that along with many countries worldwide Australia is facing an increasing pandemic. In contrast Japan is expected to have a decrease in the next twenty years in the number of persons with diabetes.

Keywords: Epidemiological methods, aging, prevalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
438 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
437 A Similarity Measure for Clustering and its Applications

Authors: Guadalupe J. Torres, Ram B. Basnet, Andrew H. Sung, Srinivas Mukkamala, Bernardete M. Ribeiro

Abstract:

This paper introduces a measure of similarity between two clusterings of the same dataset produced by two different algorithms, or even the same algorithm (K-means, for instance, with different initializations usually produce different results in clustering the same dataset). We then apply the measure to calculate the similarity between pairs of clusterings, with special interest directed at comparing the similarity between various machine clusterings and human clustering of datasets. The similarity measure thus can be used to identify the best (in terms of most similar to human) clustering algorithm for a specific problem at hand. Experimental results pertaining to the text categorization problem of a Portuguese corpus (wherein a translation-into-English approach is used) are presented, as well as results on the well-known benchmark IRIS dataset. The significance and other potential applications of the proposed measure are discussed.

Keywords: Clustering Algorithms, Clustering Applications, Similarity Measures, Text Clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
436 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: Causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425