World Academy of Science, Engineering and Technology
[Chemical and Molecular Engineering]
Online ISSN : 1307-6892
26 Investigation of the Electronic Properties of Au/methyl-red/Ag Surface type Schottky Diode by Current-Voltage Method
Authors: Zubair Ahmad, Muhammad Hassan Sayyad
Abstract:
In this paper, fabrication and study of electronic properties of Au/methyl-red/Ag surface type Schottky diode by current-voltage (I-V) method has been reported. The I-V characteristics of the Schottky diode showed the good rectifying behavior. The values of ideality factor n and barrier height b of Au/methyl-red/Ag Schottky diode were calculated from the semi-log I-V characteristics and by using the Cheung functions. From semi-log current-voltage characteristics the values of n and b were found 1.93 and 0.254 eV, respectively, while by using Cheung functions their values were calculated 1.89 and 0.26 eV, respectively. The effect of series resistance was also analyzed by Cheung functions. The series resistance RS values were determined from dV/d(lnI)–I and H(I)–I graphs and were found to be 1.1 k and 1.3 k, respectively.
Keywords: Surface type Schottky diodes, Methyl-red, Currentvoltage method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163025 Separation of Vitamin B2 and B12 byImpregnate HPTLC Plates with Boric Acid
Authors: Homayon Ahmad Panahi, Hossein Sid Kalal, Atyeh Rahimi
Abstract:
A high performance thin layer chromatography system (HPTLC) for the separation of vitamin B2 and B12 has been developed. The separation was successfully using a solvent system of methanol, water, ammonia 7.3.1 (V/V) as mobile phase on HPTLC plates impregnated with boric acid. The effect of other mobile phases on the separation of vitamins was also examined. The method is based on different behavior of investigated compounds in impregnated TLC plates with different amount of boric acid. The Rf values of vitamin B2 and B12 are considered on non impregnated and impregnated silica gel HPTLC plate with boric acid. The effect of boric acid in the mobile phase and on HPTLC plates on the RF values of the vitamins has also been studied.Keywords: High performance thin layer chromatography, HPTLC, Vitamin B2, Vitamin B12, Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220024 Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography
Authors: Elham Moniri, Homayon Ahmad Panahi, Ahmad Izadi, Mohamad Mehdi Parvin, Atyeh Rahimi
Abstract:
In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.Keywords: Thin layer chromatography (TLC), Aspirin, Salicylic acid, Sulfosalycylic acid, Boric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232523 1-D Modeling of Hydrate Decomposition in Porous Media
Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi
Abstract:
This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.
Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205322 Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles
Authors: B. Tirandazi, M. Mehrpooya, A. Vatani
Abstract:
This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.
Keywords: exergy; Valve; CRP; refrigeration cycle; propane refrigerant; C2+ Recovery; Ethane Recovery;.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120621 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section
Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie
Abstract:
The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.Keywords: Contraction, Electroviscous, Microfluidic, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178020 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique
Authors: R. Sarathi, G. Koperundevi
Abstract:
Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383919 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177118 Osmotic Dehydration of Beetroot in Salt Solution: Optimization of Parameters through Statistical Experimental Design
Authors: P. Manivannan, M. Rajasimman
Abstract:
Response surface methodology was used for quantitative investigation of water and solids transfer during osmotic dehydration of beetroot in aqueous solution of salt. Effects of temperature (25 – 45oC), processing time (30–150 min), salt concentration (5–25%, w/w) and solution to sample ratio (5:1 – 25:1) on osmotic dehydration of beetroot were estimated. Quadratic regression equations describing the effects of these factors on the water loss and solids gain were developed. It was found that effects of temperature and salt concentrations were more significant on the water loss than the effects of processing time and solution to sample ratio. As for solids gain processing time and salt concentration were the most significant factors. The osmotic dehydration process was optimized for water loss, solute gain, and weight reduction. The optimum conditions were found to be: temperature – 35oC, processing time – 90 min, salt concentration – 14.31% and solution to sample ratio 8.5:1. At these optimum values, water loss, solid gain and weight reduction were found to be 30.86 (g/100 g initial sample), 9.43 (g/100 g initial sample) and 21.43 (g/100 g initial sample) respectively.Keywords: Optimization, Osmotic dehydration, Beetroot, saltsolution, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345817 Kinetic Spectrophotometric Determination of Ramipril in Commercial Dosage Forms
Authors: Nafisur Rahman, Habibur Rahman, Syed Najmul Hejaz Azmi
Abstract:
This paper presents a simple and sensitive kinetic spectrophotometric method for the determination of ramipril in commercial dosage forms. The method is based on the reaction of the drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 100 ± 1ºC. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Fixed-time (ΔA) and equilibrium methods are adopted for constructing the calibration curves. Both the calibration curves were found to be linear over the concentration ranges 20 - 220 μg/ml. The regression analysis of calibration data yielded the linear equations: Δ A = 6.30 × 10-4 + 1.54 × 10-3 C and A = 3.62 × 10-4 + 6.35 × 10-3 C for fixed time (Δ A) and equilibrium methods, respectively. The limits of detection (LOD) for fixed time and equilibrium methods are 1.47 and 1.05 μg/ml, respectively. The method has been successfully applied to the determination of ramipril in commercial dosage forms. Statistical comparison of the results shows that there is no significant difference between the proposed methods and Abdellatef-s spectrophotometric method.Keywords: Equilibrium method, Fixed-time (ΔA) method, Ramipril, Spectrophotometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229916 Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
Authors: Kozak K, M. Kozak, K. Stapor
Abstract:
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed kernel weight function aims to combine properties of graphical structure and molecule descriptors of screening compounds. We apply the modified knn method on several experimental data from biological screens. The experimental results confirm the effectiveness of the proposed method.
Keywords: biological screening, kernel methods, KNN, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227415 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process
Authors: P. Georgieva, S. Feyo de Azevedo
Abstract:
This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183714 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
Authors: Petia Georgieva, Sebastião Feyo de Azevedo
Abstract:
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.
Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187413 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164812 Magnetization of Thin-Film Permalloy Ellipses used for Programmable Motion of Magnetic Particles
Authors: P. Warnicke
Abstract:
Simulations of magnetic microstructure in elliptical Permalloy elements used for controlled motion of magnetic particles are discussed. The saturating field of the elliptical elements was studied with respect to lateral dimensions for one-vortex, cross-tie, diamond and double-diamond states as initial zero-field domain configurations. With aspect ratio of 1:3 the short axis was varied from 125 nm to 1000 nm, whereas the thickness was kept constant at 50 nm.Keywords: Domain structure, magnetization, micromagnetics, Permalloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139711 The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces
Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154010 Preparation and Characterisation of Chemically Activated Almond Shells by Optimization of Adsorption Parameters for Removal of Chromium VI from Aqueous Solutions
Authors: Inamullah Bhatti, Khadija Qureshi, R. A. Kazi, Abdul Khalique Ansari
Abstract:
Activated carbon was prepared from agricultural waste “almond (Prunus amygdalus) nut shells" by chemical activation with phosphoric acid as an activating agent at 450 °C for 24 hr soaking time. The physical and chemical properties were analyzed. The adsorption of chromium VI from aqueous solution on almond nut shell activated carbon (ASAC) was investigated. The adsorption process parameters pH, agitation speed, agitation time, adsorbent dose were optimized. 98% of Cr VI was sorbed at pH 2 and stirring speed 200 rpm.. Surface structure showed that ASAC has a spongy type structure showing large number of pores
Keywords: adsorption, sorbent , sorbate and activation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24539 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure
Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin
Abstract:
Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.
Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22228 Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor
Authors: K. Vakhshouri, M.M. Y. Motamed Hashemi
Abstract:
A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.
Keywords: Steam reforming, direct reduction, heat transfer, two-dimensional model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36437 Phase Behavior of CO2 and CH4 Hydrate in Porous Media
Authors: Seong-Pil Kang, Ho-Jung Ryu, Yongwon Seo
Abstract:
Hydrate phase equilibria for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal diameters 6, 30, and 100 nm were measured and compared with the calculated results based on van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data. The structural characteristics of gas hydrates in silica gel pores were investigated through NMR spectroscopy.Keywords: CO2, CH4, gas hydrate, equilibria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24396 The Using of Mixing Amines in an Industrial Gas Sweetening Plant
Authors: B. Sohbi, M. Meakaff, M. Emtir, M. Elgarni
Abstract:
Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.
Keywords: Natural gas, alkanolamine process, gas sweetening plant, simulation, mixing amines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38135 CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha
Authors: D. Salari, A. Niaei, P. Chitsaz Yazdi, M. Derakhshani, S. R. Nabavi
Abstract:
This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section of the reactor. The reaction scheme was involved one primary reaction and 24 secondary reactions. Because of high CPU times in these simulations, parallel processing have been used. In this study the coke formation process in fixed bed and empty tube reactor was simulated and coke in these reactors are compared. In addition, the effect of steam ratio and feed flow rate on coke formation was investigated.Keywords: Coke Formation, CFD Simulation, Fixed Bed, Catalyitic Cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25054 New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation
Authors: Ehsan Ghanaei, Feridun Esmaeilzadeh, Jamshid Fathi Kaljahi
Abstract:
In the previous multi-solid models,¤ò approach is used for the calculation of fugacity in the liquid phase. For the first time, in the proposed multi-solid thermodynamic model,γ approach has been used for calculation of fugacity in the liquid mixture. Therefore, some activity coefficient models have been studied that the results show that the predictive Wilson model is more appropriate than others. The results demonstrate γ approach using the predictive Wilson model is in more agreement with experimental data than the previous multi-solid models. Also, by this method, generates a new approach for presenting stability analysis in phase equilibrium calculations. Meanwhile, the run time in γ approach is less than the previous methods used ¤ò approach. The results of the new model present 0.75 AAD % (Average Absolute Deviation) from the experimental data which is less than the results error of the previous multi-solid models obviously.Keywords: Multi-solid thermodynamic model, PredictiveWilson model, Wax formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19793 The Effect of Vibration on the Absorption of CO2 with Chemical Reaction in Aqueous Solution of Calcium Hydroxide
Authors: B. Sohbi, M. Emtir, M. Elgarni
Abstract:
An interesting method to produce calcium carbonate is based in a gas-liquid reaction between carbon dioxide and aqueous solutions of calcium hydroxide. The design parameters for gas-liquid phase are flow regime, individual mass transfer, gas-liquid specific interfacial area. Most studies on gas-liquid phase were devoted to the experimental determination of some of these parameters, and more specifically, of the mass transfer coefficient, kLa which depends fundamentally on the superficial gas velocity and on the physical properties of absorption phase. The principle investigation was directed to study the effect of the vibration on the mass transfer coefficient kLa in gas-liquid phase during absorption of CO2 in the in aqueous solution of calcium hydroxide. The vibration with a higher frequency increase the mass transfer coefficient kLa, but vibration with lower frequency didn-t improve it, the mass transfer coefficient kLa increase with increase the superficial gas velocity.
Keywords: Environment technology, mass transfer coefficient, absorption, CO2, calcium hydroxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162 Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study
Authors: A.Seif, H.Aghaie, K.Majlesi
Abstract:
A computational study at the level density functional theory (DFT) was carried out to investigate the influences of Si and C-doping on the 14N and 27Al quadrupole coupling constant in the (10, 0) zigzag single ? walled Aluminum-Nitride nanotube (AlNNT). To this aim, a 1.16nm, length of AlNNT consisting of 40 Al atoms and 40 N atoms were selected where the end atoms are capped by hydrogen atom. To follow the purpose, three Si atoms and three C atoms were doped instead of three Al atoms and three N atoms as a central ring in the surface of the Si and C-doped AlNNT. At first both of systems optimized at the level of BLYP method and 6-31G (d) basis set and after that, the NQR parameters were calculated at the level BLYP method and 6-311+G** basis set in two optimized forms. The calculate CQ values for both optimized AlNNT systems, raw and Si and C-doped, reveal different electronic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered AlNNT systems. All the calculations were carried out using Gaussian 98 package of program.Keywords: DFT, Quadrupole Coupling Constant, Si and CDoping, Single-Walled AlN nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491 Estimating Reaction Rate Constants with Neural Networks
Authors: Benedek Kovacs, Janos Toth
Abstract:
Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.
Keywords: Neural networks, parameter estimation, linear regression, kinetic models, reaction rate coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993