Search results for: wildfire behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6456

Search results for: wildfire behavior

6456 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 17
6455 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area

Authors: Carly Madge, Melanie Zurba, Ryan Bullock

Abstract:

The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.

Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction

Procedia PDF Downloads 144
6454 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 88
6453 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions

Authors: Renata Martins Pacheco, João Claro

Abstract:

Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.

Keywords: wildfire, Mediterranean-climate regions, management, policy

Procedia PDF Downloads 122
6452 Wildfire-Related Debris-Flow and Flooding Using 2-D Hydrologic Model

Authors: Cheong Hyeon Oh, Dongho Nam, Byungsik Kim

Abstract:

Due to the recent climate change, flood damage caused by local floods and typhoons has frequently occurred, the incidence rate and intensity of wildfires are greatly increased due to increased temperatures and changes in precipitation patterns. Wildfires cause primary damage, such as loss of forest resources, as well as secondary disasters, such as landslides, floods, and debris flow. In many countries around the world, damage and economic losses from secondary damage are occurring as well as the direct effects of forest fires. Therefore, in this study, the Rainfall-Runoff model(S-RAT) was used for the wildfire affected areas in Gangneung and Goseong, which occurred on April 2019, when the stability of vegetation and soil were destroyed by wildfires. Rainfall data from Typhoon Rusa were used in the S-RAT model, and flood discharge was calculated according to changes in land cover before and after wildfire damage. The results of the calculation showed that flood discharge increased significantly due to changes in land cover, as the increase in flood discharge increases the possibility of the occurrence of the debris flow and the extent of the damage, the debris flow height and range were calculated before and after forest fire using RAMMS. The analysis results showed that the height and extent of damage increased after wildfire, but the result value was underestimated due to the characteristics that using DEM and maximum flood discharge of the RAMMS model. This research was supported by a grant(2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS). This paper work (or document) was financially supported by Ministry of the Interior and Safety as 'Human resoure development Project in Disaster management'.

Keywords: wildfire, debris flow, land cover, rainfall-runoff meodel S-RAT, RAMMS, height

Procedia PDF Downloads 120
6451 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 173
6450 Impacts on Atmospheric Mercury from Changes in Climate, Land Use, Land Cover, and Wildfires

Authors: Shiliang Wu, Huanxin Zhang, Aditya Kumar

Abstract:

There have been increasing concerns on atmospheric mercury as a toxic and bioaccumulative pollutant in the global environment. Global change, including changes in climate change, land use, land cover and wildfires activities can all have significant impacts on atmospheric mercury. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from global change on atmospheric mercury. All of these factors in the context of global change are found to have significant impacts on the long-term evolution of atmospheric mercury and can substantially alter the global source-receptor relationships for mercury. We also estimate the global Hg emissions from wildfires for present-day and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Present global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions both globally (+28%) and regionally. Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

Keywords: climate change, land use, land cover, wildfires

Procedia PDF Downloads 322
6449 Wildfire Risk and Biodiversity Management: Understanding Perceptions and Preparedness

Authors: Emily Moskwa, Delene Weber, Jacob Arnold, Guy M. Robinson, Douglas K. Bardsley

Abstract:

Management strategies to reduce the risks to human life and property from wildfire are key contemporary concerns, with a growing literature exploring these issues from a social research perspective. Efforts range from narrowly focused examinations, such as comparing the level of community support for vegetation clearance with that of controlled burning, to broader considerations of what constitutes effective fire management policy and education campaigns. However, little analysis is available that integrates the social component of risk mitigation and the influence of educational materials with the biodiversity conservation strategies so often needed in fire-prone ecosystems found on the periphery of urban areas. Indeed many communities living on the fringe of Australian cities face major issues relating to an increased risk of wildfire events and a decline in local biodiversity. Inadequate policy and planning, and a lack of awareness or information, exacerbate this risk. This has brought forward an emerging governance challenge that requires the mitigation of wildfire risk while simultaneously supporting improved conservation practices in these urban-fringe areas. Focusing on the perceptions and experiences of residents of the Lower Eyre Peninsula in South Australia, this study analyses data collected from a series of semi-structured interviews with landholders (n=20) living in rural and urban-fringe areas surrounding the city of Port Lincoln, a city with a growing population and one that has faced a number of very large fires in recent years. In South Australia, new policies have assigned increased responsibility on individual landholders to manage their land and prepare themselves for a wildfire event, potentially to the detriment of the surrounding native vegetation. Our findings indicate the value of gaining a more nuanced understanding of the perceptions and behaviours of landholders living in areas of high fire risk, who often choose to live there in order to be close to the natural environment. Many interviewees demonstrated a high awareness of wildfire risk as a result of their past experience with fire, and the majority considered themselves to be well-prepared in the event of a future fire. Community interactions and educational programs were found to be effective in raising awareness of risk; however, negative trust relationships with government authorities and low exposure to information concerning biodiversity resulted in an overall misunderstanding of the relationship between risk mitigation and biodiversity protection. The study offers insights into how catastrophic fires are reframing perceptions of what constitutes effective vegetation management. It provides recommendations to assist with the development of education strategies that concurrently address wildfire management and biodiversity conservation, and contribute towards environmentally-informed and risk conscious governance.

Keywords: biodiversity conservation, risk, peri-urban planning, wildfire management

Procedia PDF Downloads 248
6448 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 18
6447 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 106
6446 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 126
6445 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling

Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey

Abstract:

Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.

Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal

Procedia PDF Downloads 173
6444 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
6443 Insect Outbreaks, Harvesting and Wildfire in Forests: Mathematical Models for Coupling Disturbances

Authors: M. C. A. Leite, B. Chen-Charpentier, F. Agusto

Abstract:

A long-term goal of sustainable forest management is a relatively stable source of wood and a stable forest age-class structure has become the goal of many forest management practices. In the absence of disturbances, this forest management goal could easily be achieved. However, in the face of recurring insect outbreaks and other disruptive processes forest planning becomes more difficult, requiring knowledge of the effects on the forest of a wide variety of environmental factors (e.g., habitat heterogeneity, fire size and frequency, harvesting, insect outbreaks, and age distributions). The association between distinct forest disturbances and the potential effect on forest dynamics is a complex matter, particularly when evaluated over time and at large scale, and is not well understood. However, gaining knowledge in this area is crucial for a sustainable forest management. Mathematical modeling is a tool that can be used to broader the understanding in this area. In this talk we will introduce mathematical models formulation incorporating the effect of insect outbreaks either as a single disturbance in the forest population dynamics or coupled with other disturbances: either wildfire or harvesting. The results and ecological insights will be discussed.

Keywords: age-structured forest population, disturbances interaction, harvesting insects outbreak dynamics, mathematical modeling

Procedia PDF Downloads 523
6442 Ecosystem Post-Wildfires Effects of Thasos Island

Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes

Abstract:

Fires are one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperature regimes results on the increased levels of the intensity, frequency and the spread of fires inducing obstacles for the natural regeneration. Thasos Island is one of the Greek islands that have experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense flooding events. That also resulted to serious economic problems to the local communities and the ability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on the hydrology and soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.

Keywords: erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires

Procedia PDF Downloads 323
6441 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 238
6440 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 69
6439 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia

Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly

Abstract:

Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.

Keywords: fire, ecology, biodiversity, landscape ecology

Procedia PDF Downloads 72
6438 Externalizing Behavior Problems Influencing Social Behavior in Early Adolescence

Authors: Zhidong Zhang, Zhi-Chao Zhang

Abstract:

This study focuses on early adolescent externalizing behavioral problems which specifically concentrate on rule breaking behavior and aggressive behavior using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the externalizing behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 1975 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a hierarchical modeling method was used to explore the causal relations among background variables, breaking behavior variables and aggressive behavior variables.

Keywords: aggressive behavior, breaking behavior, early adolescence, externalizing problem

Procedia PDF Downloads 506
6437 The Effect of Sensory Integration in Reduction of Stereotype Behaviour in Autistic Children

Authors: Mohammad Khamoushi, Reza Mirmahdi

Abstract:

The aim of this research was the effect of sensory integration in reduction of stereotype behaviors in autistic children. The statistical population included 55 children with the age range 2/8 – 14 in Esfahan Ordibehesht autistic center. Purposive sampling was used for selecting the sample group and 20 children with random assignment were designated in two group; experimental and control . Research project was quasi-experimental two-group with pretest and posttest. Data collection tools included repetitive behavior scale-revised with six sub-scales: stereotype behavior, self-injurious behavior, compulsive behavior, ritualistic behavior, sameness behavior, restricted behavior. Analysis of covariance was used for analyzing hypotheses. Result show that sensory integration procedure was effective in reduction of stereotype behavior, compulsive behavior and self-injurious behavior in autistic children. According to the findings, it is suggested that effect sensory integration procedure in stereotype behavior of autism children should be studied and used for treatment of other disabilities of this children.

Keywords: autism, sensory integration procedure, stereotype behavior, compulsive behavior

Procedia PDF Downloads 578
6436 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran

Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami

Abstract:

In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.

Keywords: wildfire, vegetation, plant species, forest

Procedia PDF Downloads 42
6435 Fashion Consumption for Fashion Innovators: A Study of Fashion Consumption Behavior of Innovators and Non-Innovators

Authors: Vaishali P. Joshi, Pallav Joshi

Abstract:

The objective of this study is to examine the differences fashion innovators and non-fashion innovators in their fashion consumption behavior in terms of their pre-purchase behavior, purchase behavior and post purchase behavior. The questionnaire was distributed to a female college student for data collection for achieving the objective of the first part of the study. Question-related to fashion innovativeness and fashion consumption behavior was asked. The sample was comprised of 81 college females ages 18 through 30 who were attending Business Management degree. A series of attitude questions was used to categorize respondents on the Innovativeness Scale. 32 respondents with a score of 21 and above were designated as Fashion innovators and the remainder (49) as Non-fashion innovators. Findings showed that there exist significant differences between innovators and non-innovators in their fashion consumption behavior. Data was analyzed through frequency distribution table. Many differences were found in the behavior of innovators and non-innovators in terms of their pre-purchase, actual purchase, and post-purchase behavior.

Keywords: fashion, innovativeness, consumption behavior, purchase

Procedia PDF Downloads 558
6434 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 160
6433 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 579
6432 The Gap of Green Consumption Behavior: Driving from Attitude to Behavior

Authors: Yu Du, Jian-Guo Wang

Abstract:

Green consumption is a key link to develop the ecological economy, and consumers are vital to carry out green consumption. With environmental awareness gradually being aroused, consumers often fail to turn their positive attitude into actual green consumption behavior. According to behavior reasoning theory, reasons for adoption have a direct (positive) influence on consumers’ attitude while reasons against adoption have a direct (negative) influence on consumers’ adoption intentions, the incongruous coexistence of which leads to the attitude-behavior gap of green consumption. Based on behavior reasoning theory, this research integrates reasons for adoption and reasons against adoption into a proposed model, in which reasons both for and against green consumption mediate the relationship between consumer’ values, attitudes, and behavioral intentions. It not only extends the conventional theory of reasoned action but also provides a reference for the government and enterprises to design the repairing strategy of green consumption attitude-behavior gap.

Keywords: green product, attitude-behavior gap, behavior reasoning theory, green consumption, SEM

Procedia PDF Downloads 457
6431 Factors Predicting Preventive Behavior for Osteoporosis in University Students

Authors: Thachamon Sinsoongsud, Noppawan Piaseu

Abstract:

This predictive study was aimed to 1) describe self efficacy for risk reduction and preventive behavior for osteoporosis, and 2) examine factors predicting preventive behavior for osteoporosis in nursing students. Through purposive sampling, the sample included 746 nursing students in a public university in Bangkok, Thailand. Data were collected by a self-reported questionnaire on self efficacy and preventive behavior for osteoporosis. Data were analyzed using descriptive statistics and multiple regression analysis with stepwise method. Results revealed that majority of the students were female (98.3%) with mean age of 19.86 + 1.26 years. The students had self efficacy and preventive behavior for osteoporosis at moderate level. Self efficacy and level of education could together predicted 35.2% variance of preventive behavior for osteoporosis (p< .001). Results suggest approaches for promoting preventive behavior for osteoporosis through enhancing self efficacy among nursing students in a public university in Bangkok, Thailand.

Keywords: osteoporosis, self-efficacy, preventive behavior, nursing students

Procedia PDF Downloads 377
6430 Internet Use and Academic Procrastination Behavior in High School Students

Authors: Endah Mastuti, Prihastuti Sudaryono

Abstract:

The rapid development of Internet usage and technology influences the academic behavior of students in high schools. One of the consequences is the emergence of academic procrastination behavior. Academic procrastination behavior is students’ procrastinate behavior in completing assignments. This study aimed to see whether there are differences in the duration of using the internet with academic procrastinate behavior among high school students in Surabaya. The number of research subject is 498 high school students. Instruments of the research are academic procrastination scale and duration of the internet usage questionnaire. The results from One Way Anova shows F value 0.241 with a significance level of 0.868 This demonstrates that there is no difference between the duration of the use of the Internet with academic procrastination behavior in high school students.

Keywords: academic procrastination, duration of internet usage, students, senior high school

Procedia PDF Downloads 357
6429 Factors Related to Employee Adherence to Rules in Kuwait Business Organizations

Authors: Ali Muhammad

Abstract:

The purpose of this study is to develop a theoretical framework which demonstrates the effect of four personal factors on employees rule following behavior in Kuwaiti business organizations. The model suggested in this study includes organizational citizenship behavior, affective organizational commitment, organizational trust, and procedural justice as possible predictors of rule following behavior. The study also attempts to compare the effects of the suggested factors on employees rule following behavior. The new model will, hopefully, extend previous research by adding new variables to the models used to explain employees rule following behavior. A discussion of issues related to rule-following behavior is presented, as well as recommendations for future research.

Keywords: employee adherence to rules, organizational justice, organizational commitment, organizational citizenship behavior

Procedia PDF Downloads 454
6428 The Consumer's Behavior of Bakery Products in Bangkok

Authors: Jiraporn Weenuttranon

Abstract:

The objectives of the consumer behavior of bakery products in Bangkok are to study consumer behavior of the bakery product, to study the essential factors that could possibly affect the consumer behavior and to study recommendations for the development of the bakery products. This research is a survey research. Populations are buyer’s bakery products in Bangkok. The probability sample size is 400. The research uses a questionnaire for self-learning by using information technology. The researcher created a reliability value at 0.71 levels of significance. The data analysis will be done by using the percentage, mean, and standard deviation and testing the hypotheses by using chi-square.

Keywords: consumer, behavior, bakery, standard deviation

Procedia PDF Downloads 475
6427 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 186