Search results for: water retaining pavements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8648

Search results for: water retaining pavements

8618 Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation

Authors: Soo-yeon Seo, Su-jin Jung

Abstract:

In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated.

Keywords: underground space expansion, combined structure, temporary retaining wall, basement wall, shear connectors

Procedia PDF Downloads 117
8617 Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement

Authors: R. Pernicova, D. Dobias

Abstract:

The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standards. Regulations are detailed and described especially for European Union and for Czech Republic.

Keywords: concrete, Czech republic, pavements, recycled concrete aggregate, RCA, standards

Procedia PDF Downloads 415
8616 Recovery of Local Materials in Pavements in Areas with an Arid Climate

Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane

Abstract:

The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.

Keywords: compaction, low water content, sand, natural materials

Procedia PDF Downloads 84
8615 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material

Authors: Imran Altaf Wasil, Dinesh Ganvir

Abstract:

Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.

Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties

Procedia PDF Downloads 82
8614 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls

Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.

Abstract:

Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.

Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall

Procedia PDF Downloads 76
8613 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context

Authors: Shrikant Charhate, Gayatri Deshpande

Abstract:

Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.

Keywords: connections, geotextile, permeable ACB, pavements, stone base

Procedia PDF Downloads 257
8612 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 135
8611 Study on the Retaining Sleeve Structure for the Reduction of Eddy Current in SPMSM

Authors: Hyun-Woo Jun, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

In high-speed SPMSM design, the rotor-retaining sleeve is inserted into rotor to prevent permanent magnet’s damage. It is quite efficient way considering manufacturability, but the sleeve becomes major source of ohm loss in high-speed operation. In this paper, the high-speed motor for turbo-blower at the rating of 100kW was introduced. To improve its efficiency, the retaining sleeve’s optimal design was needed. Within the range of satisfies the mechanical safety, sleeve’s some design variables have been changed. The effect of changing design variables of the sleeve was studied. This paper presents the optimized sleeve’s advantages in electrical efficiency from the result of electromagnetic FEA (finite element analysis) software. Finally, it suggests the optimal sleeve design to reduce eddy current loss, which is related to motor shape.

Keywords: SPMSM, sleeve, eddy current, high efficiency

Procedia PDF Downloads 398
8610 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 264
8609 Study of Bored Pile Retaining Wall Using Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Excavation and retaining walls are of challenging issues in civil engineering. In this study, the behavior of one the important type of supporting systems called Contiguous Bored Pile (CBP) retaining wall is investigated using a physical model. Besides, a comparison is made between two modes of free end piles(soft bed) and fixed end piles (stiff bed). Also a back calculation of effective length (the real free length of pile) is done by measuring lateral deflection of piles in different stages of excavation in both a forementioned cases. Based on observed results, for the fixed end mode, the effective length to free length ratio (Leff/L0) is equal to unity in initial stages of excavation and less than 1 in its final stages in a decreasing manner. While this ratio for free end mode, remains constant during all stages of excavation and is always less than unity.

Keywords: contiguous bored pile wall, effective length, fixed end, free end, free length

Procedia PDF Downloads 365
8608 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 307
8607 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 384
8606 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 87
8605 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 385
8604 Synthesis of Telechelic Polymers for Asphalt Pavements

Authors: Paula C Arroyo, Norma A Sánchez, Mikhail Tlenkopatchev

Abstract:

The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees.

Keywords: asphalt polymers, metathesis polymers, telechelic polymers, modified asphalt

Procedia PDF Downloads 242
8603 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida

Abstract:

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity

Procedia PDF Downloads 463
8602 An Alternative Concept of Green Screen Keying

Authors: Jin Zhi

Abstract:

This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced.

Keywords: green screen, visual effects, compositing, matte

Procedia PDF Downloads 364
8601 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls

Authors: Akhila Palat, B. Umashankar

Abstract:

Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.

Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement

Procedia PDF Downloads 271
8600 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 220
8599 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 338
8598 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards

Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira

Abstract:

The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.

Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification

Procedia PDF Downloads 633
8597 Storm-water Management for Greenfield Area Using Low Impact Development Concept for Town Planning Scheme Mechanism

Authors: Sahil Patel

Abstract:

Increasing urbanization leads to a concrete forest. The effects of new development practices occur in the natural hydrologic cycle. Here the concerns have been raised about the groundwater recharge in sufficient quantity. With further development, porous surfaces reduce rapidly. A city like Ahmedabad, with a non-perennial river, is 100% dependent on groundwater. The Ahmedabad city receives its domestic use water from the Narmada river, located about 200 km away. The expenses to bring water is much higher. Ahmedabad city receives annually 800 mm rainfall, and mostly this water increases the local level waterlogging problems; after that, water goes to the Sabarmati river and merges into the sea. The existing developed area of Ahmedabad city is very dense, and does not offer many chances to change the built form and increase porous surfaces to absorb storm-water. Therefore, there is a need to plan upcoming areas with more effective solutions to manage storm-water. This paper is focusing on the management of stormwater for new development by retaining natural hydrology. The Low Impact Development (LID) concept is used to manage storm-water efficiently. Ahmedabad city has a tool called the “Town Planning Scheme,” which helps the local body drive new development by land pooling mechanism. This paper gives a detailed analysis of the selected area (proposed Town Planning Scheme area by the local authority) in Ahmedabad. Here the development control regulations for individual developers and some physical elements for public places are presented to manage storm-water. There is a different solution for the Town Planning scheme than that of the conventional way. A local authority can use it for any area, but it can be site-specific. In the end, there are benefits to locals with some financial analysis and comparisons.

Keywords: water management, green field development, low impact development, town planning scheme

Procedia PDF Downloads 98
8596 Influence of Surface Fault Rupture on Dynamic Behavior of Cantilever Retaining Wall: A Numerical Study

Authors: Partha Sarathi Nayek, Abhiparna Dasgupta, Maheshreddy Gade

Abstract:

Earth retaining structure plays a vital role in stabilizing unstable road cuts and slopes in the mountainous region. The retaining structures located in seismically active regions like the Himalayas may experience moderate to severe earthquakes. An earthquake produces two kinds of ground motion: permanent quasi-static displacement (fault rapture) on the fault rupture plane and transient vibration, traveling a long distance. There has been extensive research work to understand the dynamic behavior of retaining structures subjected to transient ground motions. However, understanding the effect caused by fault rapture phenomena on retaining structures is limited. The presence of shallow crustal active faults and natural slopes in the Himalayan region further highlights the need to study the response of retaining structures subjected to fault rupture phenomena. In this paper, an attempt has been made to understand the dynamic response of the cantilever retaining wall subjected to surface fault rupture. For this purpose, a 2D finite element model consists of a retaining wall, backfill and foundation have been developed using Abaqus 6.14 software. The backfill and foundation material are modeled as per the Mohr-Coulomb failure criterion, and the wall is modeled as linear elastic. In this present study, the interaction between backfill and wall is modeled as ‘surface-surface contact.’ The entire simulation process is divided into three steps, i.e., the initial step, gravity load step, fault rupture step. The interaction property between wall and soil and fixed boundary condition to all the boundary elements are applied in the initial step. In the next step, gravity load is applied, and the boundary elements are allowed to move in the vertical direction to incorporate the settlement of soil due to the gravity load. In the final step, surface fault rupture has been applied to the wall-backfill system. For this purpose, the foundation is divided into two blocks, namely, the hanging wall block and the footwall block. A finite fault rupture displacement is applied to the hanging wall part while the footwall bottom boundary is kept as fixed. Initially, a numerical analysis is performed considering the reverse fault mechanism with a dip angle of 45°. The simulated result is presented in terms of contour maps of permanent displacements of the wall-backfill system. These maps highlighted that surface fault rupture can induce permanent displacement in both horizontal and vertical directions, which can significantly influence the dynamic behavior of the wall-backfill system. Further, the influence of fault mechanism, dip angle, and surface fault rupture position is also investigated in this work.

Keywords: surface fault rupture, retaining wall, dynamic response, finite element analysis

Procedia PDF Downloads 81
8595 Drivers and Barriers of Asphalt Rubber in Sweden

Authors: Raheb Mirzanamadi, João Patrício

Abstract:

Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.

Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method

Procedia PDF Downloads 56
8594 A New Binder Mineral for Cement Stabilized Road Pavements Soils

Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner

Abstract:

Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.

Keywords: soil, stabilization, cement, binder, Novocrete, additive

Procedia PDF Downloads 199
8593 An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy

Authors: Francisco Duarte, Adelino Ferreira, Paulo Fael

Abstract:

With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented.

Keywords: road pavement, energy harvesting, energy conversion, system modelling

Procedia PDF Downloads 298
8592 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 155
8591 Hydrological Modelling of Geological Behaviours in Environmental Planning for Urban Areas

Authors: Sheetal Sharma

Abstract:

Runoff,decreasing water levels and recharge in urban areas have been a complex issue now a days pointing defective urban design and increasing demography as cause. Very less has been discussed or analysed for water sensitive Urban Master Plans or local area plans. Land use planning deals with land transformation from natural areas into developed ones, which lead to changes in natural environment. Elaborated knowledge of relationship between the existing patterns of land use-land cover and recharge with respect to prevailing soil below is less as compared to speed of development. The parameters of incompatibility between urban functions and the functions of the natural environment are becoming various. Changes in land patterns due to built up, pavements, roads and similar land cover affects surface water flow seriously. It also changes permeability and absorption characteristics of the soil. Urban planners need to know natural processes along with modern means and best technologies available,as there is a huge gap between basic knowledge of natural processes and its requirement for balanced development planning leading to minimum impact on water recharge. The present paper analyzes the variations in land use land cover and their impacts on surface flows and sub-surface recharge in study area. The methodology adopted was to analyse the changes in land use and land cover using GIS and Civil 3d auto cad. The variations were used in  computer modeling using Storm-water Management Model to find out the runoff for various soil groups and resulting recharge observing water levels in POW data for last 40 years of the study area. Results were anlayzed again to find best correlations for sustainable recharge in urban areas.

Keywords: geology, runoff, urban planning, land use-land cover

Procedia PDF Downloads 286
8590 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS

Authors: Mansour Fakhri, Monire Zokaei

Abstract:

Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.

Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement

Procedia PDF Downloads 357
8589 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 111