Search results for: visual images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3899

Search results for: visual images

3749 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.

Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair

Procedia PDF Downloads 136
3748 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 327
3747 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 117
3746 Objective Evaluation on Medical Image Compression Using Wavelet Transformation

Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah

Abstract:

The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.

Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation

Procedia PDF Downloads 266
3745 Multimodal Rhetoric in the Wildlife Documentary, “My Octopus Teacher”

Authors: Visvaganthie Moodley

Abstract:

While rhetoric goes back as far as Aristotle who focalised its meaning as the “art of persuasion”, most scholars have focused on elocutio and dispositio canons, neglecting the rhetorical impact of multimodal texts, such as documentaries. Film documentaries are being increasingly rhetoric, often used by wildlife conservationists for influencing people to become more mindful about humanity’s connection with nature. This paper examines the award-winning film documentary, “My Octopus Teacher”, which depicts naturalist, Craig Foster’s unique discovery and relationship with a female octopus in the southern tip of Africa, the Cape of Storms in South Africa. It is anchored in Leech and Short’s (2007) framework of linguistic and stylistic categories – comprising lexical items, grammatical features, figures of speech and other rhetoric features, and cohesiveness – with particular foci on diction, anthropomorphic language, metaphors and symbolism. It also draws on Kress and van Leeuwen’s (2006) multimodal analysis to show how verbal cues (the narrator’s commentary), visual images in motion, visual images as metaphors and symbolism, and aural sensory images such as music and sound synergise for rhetoric effect. In addition, the analysis of “My Octopus Teacher” is guided by Nichol’s (2010) narrative theory; features of a documentary which foregrounds the credibility of the narrative as a text that represents real events with real people; and its modes of construction, viz., the poetic mode, the expository mode, observational mode and participatory mode, and their integration – forging documentaries as multimodal texts. This paper presents a multimodal rhetoric discussion on the sequence of salient episodes captured in the slow moving one-and-a-half-hour documentary. These are: (i) The prologue: on the brink of something extraordinary; (ii) The day it all started; (iii) The narrator’s turmoil: getting back into the ocean; (iv) The incredible encounter with the octopus; (v) Establishing a relationship; (vi) Outwitting the predatory pyjama shark; (vii) The cycle of life; and (viii) The conclusion: lessons from an octopus. The paper argues that wildlife documentaries, characterized by plausibility and which provide researchers the lens to examine the ideologies about animals and humans, offer an assimilation of the various senses – vocal, visual and audial – for engaging viewers in stylized compelling way; they have the ability to persuade people to think and act in particular ways. As multimodal texts, with its use of lexical items; diction; anthropomorphic language; linguistic, visual and aural metaphors and symbolism; and depictions of anthropocentrism, wildlife documentaries are powerful resources for promoting wildlife conservation and conscientizing people of the need for establishing a harmonious relationship with nature and humans alike.

Keywords: documentaries, multimodality, rhetoric, style, wildlife, conservation

Procedia PDF Downloads 62
3744 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 105
3743 Effects of Reversible Watermarking on Iris Recognition Performance

Authors: Andrew Lock, Alastair Allen

Abstract:

Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance of investigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.

Keywords: biometrics, iris recognition, reversible watermarking, vision engineering

Procedia PDF Downloads 421
3742 Multimodal Analysis of News Magazines' Front-Page Portrayals of the US, Germany, China, and Russia

Authors: Alena Radina

Abstract:

On the global stage, national image is shaped by historical memory of wars and alliances, government ideology and particularly media stereotypes which represent countries in positive or negative ways. News magazine covers are a key site for national representation. The object of analysis in this paper is the portrayals of the US, Germany, China, and Russia in the front pages and cover stories of “Time”, “Der Spiegel”, “Beijing Review”, and “Expert”. Political comedy helps people learn about current affairs even if politics is not their area of interest, and thus satire indirectly sets the public agenda. Coupled with satirical messages, cover images and the linguistic messages embedded in the covers become persuasive visual and verbal factors, known to drive about 80% of magazine sales. Preliminary analysis identified satirical elements in magazine covers, which are known to influence and frame understandings and attract younger audiences. Multimodal and transnational comparative framing analyses lay the groundwork to investigate why journalists, editors and designers deploy certain frames rather than others. This research investigates to what degree frames used in covers correlate with frames within the cover stories and what these framings can tell us about media professionals’ representations of their own and other nations. The study sample includes 32 covers consisting of two covers representing each of the four chosen countries from the four magazines. The sampling framework considers two time periods to compare countries’ representation with two different presidents, and between men and women when present. The countries selected for analysis represent each category of the international news flows model: the core nations are the US and Germany; China is a semi-peripheral country; and Russia is peripheral. Examining textual and visual design elements on the covers and images in the cover stories reveals not only what editors believe visually attracts the reader’s attention to the magazine but also how the magazines frame and construct national images and national leaders. The cover is the most powerful editorial and design page in a magazine because images incorporate less intrusive framing tools. Thus, covers require less cognitive effort of audiences who may therefore be more likely to accept the visual frame without question. Analysis of design and linguistic elements in magazine covers helps to understand how media outlets shape their audience’s perceptions and how magazines frame global issues. While previous multimodal research of covers has focused mostly on lifestyle magazines or newspapers, this paper examines the power of current affairs magazines’ covers to shape audience perception of national image.

Keywords: framing analysis, magazine covers, multimodality, national image, satire

Procedia PDF Downloads 74
3741 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 472
3740 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 278
3739 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

Authors: Alain Gholam

Abstract:

Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.

Keywords: classroom display, student engagement, thinking classroom, visual thinking routines

Procedia PDF Downloads 199
3738 Investigation of the Functional Impact of Amblyopia on Visual Skills in Children

Authors: Chinmay V. Deshpande

Abstract:

Purpose: To assess the efficiency of visual functions and visual skills in strabismic & anisometropic amblyopes and to assess visual acuity and contrast sensitivity in anisometropic amblyopes with spectacles & contact lenses. Method: In a prospective clinical study, 32 children ageing from 5 to 15 years presenting with amblyopia in a pediatric department of Shri Ganapati Netralaya Jalna, India, were assessed for a period of three & half months. Visual acuity was measured with Snellen’s and Bailey-Lovie log MAR charts whereas contrast sensitivity was measured with Pelli-Robson chart with spectacles and contact lenses. Saccadic movements were assessed with SCCO scoring criteria and accommodative facility was checked with ±1.50 DS flippers. Stereopsis was assessed with TNO test. Results: By using Wilcoxon sign rank test p-value < 0.05 (< 0.001), the mean linear visual acuity was 0.29 (≈ 6/21) and mean single optotype visual acuity found to be 0.36 (≈ 6/18). Mean visual acuity of 0.27(≈ 6/21) with spectacles improved to 0.33 (≈ 6/18) with contact lenses in amblyopic eyes. The mean Log MAR visual acuity with spectacles and contact lens were found to be 0.602( ≈6/24) and 0.531(≈ 6/21) respectively. The contrast threshold out of 20 amblyopic eyes shows that mean contrast threshold changed in 9 patients from spectacles 0.27 to contact lens 0.19 respectively. The mean accommodative facility assessed was 5.31(± 2.37). 24 subjects (75%) revealed marked saccadic defects on the test applied. 78% subjects didn’t show even gross stereoscopic ability on TNO test. Conclusion: This study supports the facts about amblyopia and associated deficits in visual skills which are claimed in previous studies. In addition, anisometropic amblyopia can be managed better with contact lenses.

Keywords: strabismus, anisometropia, amblyopia, contrast sensitivity, saccades, stereopsis

Procedia PDF Downloads 398
3737 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 103
3736 Source Separation for Global Multispectral Satellite Images Indexing

Authors: Aymen Bouzid, Jihen Ben Smida

Abstract:

In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.

Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images

Procedia PDF Downloads 373
3735 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 43
3734 Pictorial Multimodal Analysis of Selected Paintings of Salvador Dali

Authors: Shaza Melies, Abeer Refky, Nihad Mansoor

Abstract:

Multimodality involves the communication between verbal and visual components in various discourses. A painting represents a form of communication between the artist and the viewer in terms of colors, shades, objects, and the title. This paper aims to present how multimodality can be used to decode the verbal and visual dimensions a painting holds. For that purpose, this study uses Kress and van Leeuwen’s theoretical framework of visual grammar for the analysis of the multimodal semiotic resources of selected paintings of Salvador Dali. This study investigates the visual decoding of the selected paintings of Salvador Dali and analyzing their social and political meanings using Kress and van Leeuwen’s framework of visual grammar. The paper attempts to answer the following questions: 1. How far can multimodality decode the verbal and non-verbal meanings of surrealistic art? 2. How can Kress and van Leeuwen’s theoretical framework of visual grammar be applied to analyze Dali’s paintings? 3. To what extent is Kress and van Leeuwen’s theoretical framework of visual grammar apt to deliver political and social messages of Dali? The paper reached the following findings: the framework’s descriptive tools (representational, interactive, and compositional meanings) can be used to analyze the paintings’ title and their visual elements. Social and political messages were delivered by appropriate usage of color, gesture, vectors, modality, and the way social actors were represented.

Keywords: multimodal analysis, painting analysis, Salvador Dali, visual grammar

Procedia PDF Downloads 88
3733 Holographic Art as an Approach to Enhance Visual Communication in Egyptian Community: Experimental Study

Authors: Diaa Ahmed Mohamed Ahmedien

Abstract:

Nowadays, it cannot be denied that the most important interactive arts trends have appeared as a result of significant scientific mutations in the modern sciences, and holographic art is not an exception, where it is considered as a one of the most important major contemporary interactive arts trends in visual arts. Holographic technique had been evoked through the modern physics application in late 1940s, for the improvement of the quality of electron microscope images by Denis Gabor, until it had arrived to Margaret Benyon’s art exhibitions, and then it passed through a lot of procedures to enhance its quality and artistic applications technically and visually more over 70 years in visual arts. As a modest extension to these great efforts, this research aimed to invoke extraordinary attempt to enroll sample of normal people in Egyptian community in holographic recording program to record their appreciated objects or antiques, therefore examine their abilities to interact with modern techniques in visual communication arts. So this research tried to answer to main three questions: 'can we use the analog holographic techniques to unleash new theoretical and practical knowledge in interactive arts for public in Egyptian community?', 'to what extent holographic art can be familiar with public and make them able to produce interactive artistic samples?', 'are there possibilities to build holographic interactive program for normal people which lead them to enhance their understanding to visual communication in public and, be aware of interactive arts trends?' This research was depending in its first part on experimental methods, where it conducted in Laser lab at Cairo University, using Nd: Yag Laser 532 nm, and holographic optical layout, with selected samples of Egyptian people that they have been asked to record their appreciated object, after they had already learned recording methods, and in its second part on a lot of discussion panel had conducted to discuss the result and how participants felt towards their holographic artistic products through survey, questionnaires, take notes and critiquing holographic artworks. Our practical experiments and final discussions have already lead us to say that this experimental research was able to make most of participants pass through paradigm shift in their visual and conceptual experiences towards more interaction with contemporary visual arts trends, as an attempt to emphasize to the role of mature relationship between the art, science and technology, to spread interactive arts out in our community through the latest scientific and artistic mutations around the world and the role of this relationship in our societies particularly with those who have never been enrolled in practical arts programs before.

Keywords: Egyptian community, holographic art, laser art, visual art

Procedia PDF Downloads 450
3732 Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer's Disease Patients

Authors: A. V. Sokolov, S. V. Vorobyev, A. Yu. Efimtcev, V. Yu. Lobzin, I. A. Lupanov, O. A. Cherdakov, V. A. Fokin

Abstract:

Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions.

Keywords: Alzheimer’s disease, functional MRI, voxel-based morphometry

Procedia PDF Downloads 287
3731 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas

Authors: Antigoni Panagiotopoulou, Lemonia Ragia

Abstract:

High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.

Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView

Procedia PDF Downloads 110
3730 The Intersection of Art and Technology: Innovations in Visual Communication Design

Authors: Sareh Enjavi

Abstract:

In recent years, the field of visual communication design has seen a significant shift in the way that art is created and consumed, with the advent of new technologies like virtual reality, augmented reality, and artificial intelligence. This paper explores the ways in which technology is changing the landscape of visual communication design, and how designers are incorporating new technological tools into their artistic practices. The primary objective of this research paper is to investigate the ways in which technology is influencing the creative process of designers and artists in the field of visual communication design. The paper also aims to examine the challenges and limitations that arise from the intersection of art and technology in visual communication design, and to identify strategies for overcoming these challenges. Drawing on examples from a range of fields, including advertising, fine art, and digital media, this paper highlights the exciting innovations that are emerging as artists and designers use technology to push the boundaries of traditional artistic expression. The paper argues that embracing technological innovation is essential for the continued evolution of visual communication design. By exploring the intersection of art and technology, designers can create new and exciting visual experiences that engage and inspire audiences in new ways. The research also contributes to the theoretical and methodological understanding of the intersection of art and technology, a topic that has gained significant attention in recent years. Ultimately, this paper emphasizes the importance of embracing innovation and experimentation in the field of visual communication design, and highlights the exciting innovations that are emerging as a result of the intersection of art and technology, and emphasizes the importance of embracing innovation and experimentation in the field of visual communication design.

Keywords: visual communication design, art and technology, virtual reality, interactive art, creative process

Procedia PDF Downloads 75
3729 Functional Vision of Older People in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Early detection of visual problems plays a key role in the aging process. However, although vision problems are common among older people, the percentage of aging people who perform regular optometric exams is low. In fact, uncorrected refractive errors are one of the main causes of visual impairment in this group of the population. Purpose: To evaluate functional vision of older residents in order to show the urgent need of visual screening programs in Galician nursing homes. Methodology: We examined 364 older adults aged 65 years and over. To measure vision of the daily living, we tested distance and near presenting visual acuity (binocular visual acuity with habitual correction if warn, directional E-Snellen) Presenting near vision was tested at the usual working distance. We defined visual impairment (distance and near) as a presenting visual acuity less than 0.3. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. Association between categorical variables was performed using chi-square tests. We used Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest. Results: 23,1% of participants have visual impairment for distance vision and 16,4% for near vision. The percentage of residents with far and near visual impairment reaches 8,2%. As expected, prevalence of visual impairment increases with age. No differences exist with regard to the level of functional vision between gender. Differences exist between age group respect to distance vision, but not in case of near vision. Conclusion: prevalence of visual impairment is high among the older people tested in this pilot study. This means a high percentage of older people with limitations in their daily life activities. It is necessary to develop an effective vision screening program for early detection of vision problems in Galician nursing homes.

Keywords: functional vision, elders, aging, nursing homes

Procedia PDF Downloads 381
3728 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 362
3727 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.

Keywords: edge detection, multicore, gpu, opencl, mpi

Procedia PDF Downloads 444
3726 Audio-Visual Entrainment and Acupressure Therapy for Insomnia

Authors: Mariya Yeldhos, G. Hema, Sowmya Narayanan, L. Dhiviyalakshmi

Abstract:

Insomnia is one of the most prevalent psychological disorders worldwide. Some of the deficiencies of the current treatments of insomnia are: side effects in the case of sleeping pills and high costs in the case of psychotherapeutic treatment. In this paper, we propose a device which provides a combination of audio visual entrainment and acupressure based compression therapy for insomnia. This device provides drug-free treatment of insomnia through a user friendly and portable device that enables relaxation of brain and muscles, with certain advantages such as low cost, and wide accessibility to a large number of people. Tools adapted towards the treatment of insomnia: -Audio -Continuous exposure to binaural beats of a particular frequency of audible range -Visual -Flash of LED light -Acupressure points -GB-20 -GV-16 -B-10

Keywords: insomnia, acupressure, entrainment, audio-visual entrainment

Procedia PDF Downloads 406
3725 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 592
3724 Effects of the Visual and Auditory Stimuli with Emotional Content on Eyewitness Testimony

Authors: İrem Bulut, Mustafa Z. Söyük, Ertuğrul Yalçın, Simge Şişman-Bal

Abstract:

Eyewitness testimony is one of the most frequently used methods in criminal cases for the determination of crime and perpetrator. In the literature, the number of studies about the reliability of eyewitness testimony is increasing. The study aims to reveal the factors that affect the short-term and long-term visual memory performance of the participants in the event of an accident. In this context, the effect of the emotional content of the accident and the sounds during the accident on visual memory performance was investigated with eye-tracking. According to the results, the presence of visual and auditory stimuli with emotional content during the accident decreases the participants' both short-term and long-term recall performance. Moreover, the data obtained from the eye monitoring device showed that the participants had difficulty in answering even the questions they focused on at the time of the accident.

Keywords: eye tracking, eyewitness testimony, long-term recall, short-term recall, visual memory

Procedia PDF Downloads 128
3723 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data

Authors: Mahdi Salarian, Xi Xu, Rashid Ansari

Abstract:

Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.

Keywords: localization, retrieval, GPS uncertainty, bag of word

Procedia PDF Downloads 256
3722 Wearable Music: Generation of Costumes from Music and Generative Art and Wearing Them by 3-Way Projectors

Authors: Noriki Amano

Abstract:

The final goal of this study is to create another way in which people enjoy music through the performance of 'Wearable Music'. Concretely speaking, we generate colorful costumes in real- time from music and to realize their dressing by projecting them to a person. For this purpose, we propose three methods in this study. First, a method of giving color to music in a three-dimensionally way. Second, a method of generating images of costumes from music. Third, a method of wearing the images of music. In particular, this study stands out from other related work in that we generate images of unique costumes from music and realize to wear them. In this study, we use the technique of generative arts to generate images of unique costumes and project the images to the fog generated around a person from 3-way using projectors. From this study, we can get how to enjoy music as 'wearable'. Furthermore, we are also able to have the prospect of unconventional entertainment based on the fusion between music and costumes.

Keywords: entertainment computing, costumes, music, generative programming

Procedia PDF Downloads 145
3721 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions

Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin

Abstract:

In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.

Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography

Procedia PDF Downloads 245
3720 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions

Authors: Feran Asur

Abstract:

In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.

Keywords: residential landscape, planting, urban space, visual improvement

Procedia PDF Downloads 98