Search results for: vertical structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8417

Search results for: vertical structure

8357 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient

Procedia PDF Downloads 356
8356 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill

Procedia PDF Downloads 251
8355 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 125
8354 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment

Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang

Abstract:

Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.

Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique

Procedia PDF Downloads 370
8353 An Exemption for Vertical Restraint Regarding Intellectual Property Licensing: Case Study of Thailand

Authors: Sanpetchuda Krutkrua, Suphawatchara Malanond

Abstract:

Throughout the history of Antitrust regimes in Thailand, Thailand has been trying to prevent collusive practices in the market through the amendments of the Trade Competition Act, and Thailand just passed the current Trade Competition Act of B.E. 2560 in 2017 of which several aspects of the law were amended in order to enhance the prevention of collusive outcome through both vertical trade restraints and horizontal trade restraints. An agreement is vertical when it involves arrangements that are in a complementary relationship. In Section 55 of the Act, any agreements to reduce the price, quantity, or quality of the goods, agreements to assign a sole retailer for the goods, and the agreement to impose conditions on the retailers are not allowed. However, Section 56 provides exemptions for the vertical relationship between the business operators, the franchise agreement, and the licensing agreement as long as such agreements do not surpass the necessity to do so, create monopolization, or affect the consumers in terms of price, quality, quantity, or options. The paper aims to explore the extent of the exemption under Section 56 and sequential regulations in terms of the vertical trade restraints regarding intellectual property licensing, and, at the same time, compare with the exemptions under the European Union competition law, and Singapore competition law. Comparative legal analysis with leading jurisdiction will illustrate the application of the newly enacted Thai Competition Act in terms of its enforcement in the global impact of IP rights, which, by nature are de jure or de facto international protection.

Keywords: antitrust, competition law, vertical restraint, intellectual property, IP licensing

Procedia PDF Downloads 129
8352 Experimental Studies of the Response of Single Piles Under Torsional and Vertical Combined Loads in Contaminated Sand

Authors: Ahmed Mohamed Nasr, Waseim Ragab Azzam, Nada Osama Ramadan

Abstract:

Contaminated soil can weaken the stability of buildings and infrastructure, posing serious risks to their structural integrity. Therefore, this study aims to understand how oil contamination affects the torsion behavior of model steel piles at different soil densities. This research is crucial for evaluating the structural integrity and stability of piles in oil-contaminated environments. Clean sand samples and heavy motor oil were mixed in amounts ranging from 0 to 6% of the soil's dry weight. The mixture was thoroughly mixed to ensure uniform distribution of the oil throughout the sandy soil for simulating the field conditions. In these investigations, the relative densities (Dr), pile slenderness ratio (Lp/Dp), oil content (O.C%), and contaminated sand layer thickness (LC) were all different. Also, the paper presents an analysis of piles that are loaded both vertically and torsionally. The findings demonstrated that the pre-applied torsion load led to a decrease in the vertical bearing ability of the pile. Also, at Dr = 80%, the ultimate vertical load under combined load at constant torsional load T = (1/3Tu, 2/3Tu, and Tu) in the cases of (Lc/Lp) = 0.5 and (Lp/Dp) =13.3 was found to be reduced by (1.48, 2.78, and 4.15%) less than piles under independent vertical load, respectively so it is crucial to consider the torsion load during pile design.

Keywords: torsion-vertical load, oil-contaminated sand, twist angle, steel pile

Procedia PDF Downloads 29
8351 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 19
8350 Qualitative Review of Seismic Response of Vertically Irregular Building Frames

Authors: Abdelhammid Chibane

Abstract:

This study summarizes state-of-the-art knowledge in the seismic response of vertically irregular building frames. Criteria defining vertical irregularity as per the current building codes have been discussed. A review of studies on the seismic behaviour of vertically irregular structures along with their findings has been presented. It is observed that building codes provide criteria to classify the vertically irregular structures and suggest dynamic analysis to arrive at design lateral forces. Most of the studies agree on the increase in drift demand in the tower portion of set-back structures and on the increase in seismic demand for buildings with discontinuous distributions in mass, stiffness, and strength. The largest seismic demand is found for the combined-stiffness-and-strength irregularity.

Keywords: mass irregularity, set-back structure, stiffness irregularity, strength irregularity, vertical irregularity

Procedia PDF Downloads 239
8349 Effect of Irregularities on Seismic Performance of Building

Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel

Abstract:

In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.

Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO

Procedia PDF Downloads 48
8348 Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India

Authors: Jaypalsinh B. Parmar, Pintu Nakrani, Ashish Chaurasia

Abstract:

Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated.

Keywords: CartoDEM, Digital Elevation Model, GPS, lower Tapi basin

Procedia PDF Downloads 333
8347 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 212
8346 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method

Authors: Yan-Ting Lin, Wei-Nian Su

Abstract:

The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.

Keywords: vertical axis wind turbine, CFD, DOE, VAWT

Procedia PDF Downloads 404
8345 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 291
8344 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 102
8343 Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine

Authors: Jianyang Zhu, Lin Jiang, Tixian Tian

Abstract:

Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics.

Keywords: vertical axis wind turbine, N-S equations, dynamic mesh technique, thickness, solidity

Procedia PDF Downloads 224
8342 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor

Procedia PDF Downloads 496
8341 Analysis of Beams with Web Opening Subject to Vertical Loads

Authors: P. Chantarawitoon, H. Askarinejad

Abstract:

The steel beams with web opening including the cellular and castellated I-beams are fabricated from a solid web I-beam through a double cutting method to a specific shape and size along the beam. The two halves of the beams are then welded together, increasing the overall depth of the web section. In this paper, the deflection of the cellular and castellated beams subject to uniform vertical loads are investigated using Finite Element Autodesk simulation package. The structural response of the beams with web opening are compared with regular solid beams. Additionally, parametric studies are carried out to study the influence of the geometric properties of a cellular beam to its structural responses.

Keywords: beams with web opening, cellular and castellated beams, finite element analysis, vertical deflection

Procedia PDF Downloads 220
8340 DIAL Measurements of Vertical Distribution of Ozone at the Siberian Lidar Station in Tomsk

Authors: Oleg A. Romanovskii, Vladimir D. Burlakov, Sergey I. Dolgii, Olga V. Kharchenko, Alexey A. Nevzorov, Alexey V. Nevzorov

Abstract:

The paper presents the results of DIAL measurements of the vertical ozone distribution. The ozone lidar operate as part of the measurement complex at Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk (56.5ºN; 85.0ºE) and designed for study of the vertical ozone distribution in the upper troposphere–lower stratosphere. Most suitable wavelengths for measurements of ozone profiles are selected. We present an algorithm for retrieval of vertical distribution of ozone with temperature and aerosol correction during DIAL lidar sounding of the atmosphere. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. Results of lidar measurement at wavelengths of 299 and 341 nm agree with model estimates, which point to acceptable accuracy of ozone sounding in the 6–18 km altitude range.

Keywords: lidar, ozone distribution, atmosphere, DIAL

Procedia PDF Downloads 467
8339 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration

Authors: Amir Abdelqodus, Mario Shehata

Abstract:

The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.

Keywords: aerodynamics, CFD, potential flow, UAV, VTOL

Procedia PDF Downloads 407
8338 Behavior of Steel Moment Frames Subjected to Impact Load

Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim

Abstract:

This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.

Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA

Procedia PDF Downloads 316
8337 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network

Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram

Abstract:

The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.

Keywords: VAWT, ANN, optimization, inverse design

Procedia PDF Downloads 286
8336 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 160
8335 Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method

Authors: Chukwu Fidelis Ndubuisi, Madufor Michael Ozims, Asogwa Vivian Ndidiamaka, Egenamba Juliet Ngozi, Okonkwo Stephen C., Kamah Chukwudi David

Abstract:

Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria.

Keywords: deflection of vertical, ellipsoidal height, least square, orthometric height

Procedia PDF Downloads 177
8334 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization

Procedia PDF Downloads 234
8333 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube

Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour

Abstract:

In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.

Keywords: mixed convection, heat transfer, nanofluid, vertical tube, microfin tube

Procedia PDF Downloads 355
8332 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 422
8331 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.

Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software

Procedia PDF Downloads 381
8330 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.

Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection

Procedia PDF Downloads 346
8329 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators

Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino

Abstract:

In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.

Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators

Procedia PDF Downloads 413
8328 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 126