Search results for: velocity profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3478

Search results for: velocity profile

3178 A Comparative Study between Ionic Wind and Conventional Fan

Authors: J. R. Lee, E. V. Lau

Abstract:

Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan.

Keywords: conventional fan, heat transfer, ionic wind, wind profile

Procedia PDF Downloads 292
3177 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media

Authors: Golden J. Zhang, Dongbao Zhou

Abstract:

Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.

Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics

Procedia PDF Downloads 86
3176 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets

Authors: Shahana Sharmin

Abstract:

In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.

Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets

Procedia PDF Downloads 378
3175 Numerical Method for Fin Profile Optimization

Authors: Beghdadi Lotfi

Abstract:

In the present work a numerical method is proposed in order to optimize the thermal performance of finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry, effectiveness

Procedia PDF Downloads 238
3174 Unsteady and Steady State in Natural Convection

Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni

Abstract:

This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.

Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady

Procedia PDF Downloads 462
3173 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 395
3172 Brinkman Flow Past an Impervious Spheroid under Stokesian Assumption

Authors: D. Satish Kumar, T. K. V. Iyengar

Abstract:

In this paper, we study the Brinkman flow, under Stokesian assumption, past an impervious prolate spheroid and obtain the expressions for the velocity and pressure fields in terms of Legendre functions, Associated Legendre functions, prolate radial and angular spheroidal wave functions. We further obtain an expression for the drag experienced by the spheroid and numerically study its variation with respect to the flow parameters and display the results through graphs.

Keywords: prolate spheoid, porous medium, stokesian assumption, brinkman model, velocity, pressure, drag

Procedia PDF Downloads 503
3171 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity

Authors: K. Orozović, B. Balon

Abstract:

In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.

Keywords: de Brogli wavelength, relativistic physics, rest energy, quantum physics

Procedia PDF Downloads 125
3170 Improvement in Safety Profile of Semecarpus Anacardium Linn by Shodhana: An Ayurvedic Purification Method

Authors: Umang H. Gajjar, K. M. Khambholja, R. K. Patel

Abstract:

Semecarpus anacardium shows the presence of bioflavonoids, phenolic compounds, bhilawanols, minerals, vitamins and amino acids. Detoxified S. anacardium and its oils are considered to have anti-inflammatory properties and used in nervous debility, neuritis, rheumatism and leprous modules. S. anacardium if used without purification causes toxic skin inflammation problem because it contains toxic phenolic oil. During this Shodhana Process - An ayurvedic purification method, toxic phenolic oil was removed, have marked effect on the concentration of the phytoconstituent & antioxidant activity of S. anacardium. Total phenolic content decreased up to 70 % (from 28.9 %w/w to 8.94 %w/w), while there is a negligible effect on the concentration of total flavonoid (7.51 %w/w to 7.43 %w/w) and total carbohydrate (0.907 %w/w to 0.853 % w/w) content. IC50& EC50 value of extract of S. anacardium before and after purification are 171.7 & 314.3 while EC50values are 280.μg/ml & 304. μg/ml, shows that antioxidant activity of S. anacardium is decreased but the safety profile of the drug is increased as the toxic phenolic oil was removed during Shodhana - An ayurvedic purification method.

Keywords: Semecarpus anacardium, Shodhana process, safety profile, improvement

Procedia PDF Downloads 231
3169 Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms

Authors: Safia Akram

Abstract:

The influence of nanofluid with different waveforms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two-dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions for temperature and nanoparticle volume fraction are calculated. Series solution of the stream function and pressure gradient are carried out using perturbation technique. The flow quantities have been examined for various physical parameters of interest. It was found, that the magnitude value of the velocity profile decreases with an increase in volume flow rate (Q) and relaxation times (ζ) and increases in sinusoidal, multisinusoidal, trapezoidal and triangular waves. It was also observed that the size of the trapping bolus decreases with the drop of the width of the channel ‘d’ and increases with a rise of relaxation times ζ.

Keywords: nanofluid particles, peristaltic flow, pseudoplastic fluid, different waveforms, inclined asymmetric channel

Procedia PDF Downloads 199
3168 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 117
3167 Correlation between Cephalometric Measurements and Visual Perception of Facial Profile in Skeletal Type II Patients

Authors: Choki, Supatchai Boonpratham, Suwannee Luppanapornlarp

Abstract:

The objective of this study was to find a correlation between cephalometric measurements and visual perception of facial profile in skeletal type II patients. In this study, 250 lateral cephalograms of female patients from age, 20 to 22 years were analyzed. The profile outlines of all the samples were hand traced and transformed into silhouettes by the principal investigator. Profile ratings were done by 9 orthodontists on Visual Analogue Scale from score one to ten (increasing level of convexity). 37 hard issue and soft tissue cephalometric measurements were analyzed by the principal investigator. All the measurements were repeated after 2 weeks interval for error assessment. At last, the rankings of visual perceptions were correlated with cephalometric measurements using Spearman correlation coefficient (P < 0.05). The results show that the increase in facial convexity was correlated with higher values of ANB (A point, nasion and B point), AF-BF (distance from A point to B point in mm), L1-NB (distance from lower incisor to NB line in mm), anterior maxillary alveolar height, posterior maxillary alveolar height, overjet, H angle hard tissue, H angle soft tissue and lower lip to E plane (absolute correlation values from 0.277 to 0.711). In contrast, the increase in facial convexity was correlated with lower values of Pg. to N perpendicular and Pg. to NB (mm) (absolute correlation value -0.302 and -0.294 respectively). From the soft tissue measurements, H angles had a higher correlation with visual perception than facial contour angle, nasolabial angle, and lower lip to E plane. In conclusion, the findings of this study indicated that the correlation of cephalometric measurements with visual perception was less than expected. Only 29% of cephalometric measurements had a significant correlation with visual perception. Therefore, diagnosis based solely on cephalometric analysis can result in failure to meet the patient’s esthetic expectation.

Keywords: cephalometric measurements, facial profile, skeletal type II, visual perception

Procedia PDF Downloads 111
3166 Organism Profile Causing Prosthetic Joint Infection Continues to Evolve

Authors: Bahaa Eldin Kornah

Abstract:

The organism profile for peri-prosthetic joint infection caused by hematogenous seeding or direct inoculations is changing. The organisms that cause prosthetic joint infections range from normal skin colonizers to highly virulent pathogens. The pathogens continue to evolve. While Staphylococcus aureus continues to be the leading organism, gram-negative bacilli account for approximately 7% of cases and that incidence is increasing. Methicillin-resistant S. aureus(MRSA) accounts for approximately 10% of all infections occurring in the community setting and 20% of those in the health care setting. The list of organisms causing PJI has expanded in recent years. It is important to have an understanding of which organisms may be causing a periprosthetic joint infection based on where the patient contracted it and their recent medical history. Also, recent technology has expanded rapidly and new methods to detect the pathogen and why we failed in detecting it. There are a number of explanations for the latter finding, perhaps the most important reason being the liberal use of antibiotics that interferes with the isolation of the infective organism.

Keywords: infection, periprosthetic, hip, organism profile, joint infection, joint infection

Procedia PDF Downloads 53
3165 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.

Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion

Procedia PDF Downloads 352
3164 Roles of Aquatic Plants on Erosion Relief of Stream Bed

Authors: Jin-Hong Kim

Abstract:

Roles of the vegetation to mitigate the erosion of the stream bed or to facilitate the deposition of the fine sediments by the species of the aquatic plants were presented. Field investigation on the estimation of the change of the bed level and the estimation of the flow characteristics were performed. The results showed that Phragmites japonica has the mitigation function of 0.3m-0.4m of the erosion in the range of higher than 1.0m/s of flow velocity at the vegetated region. Phragmites communis has the mitigation function of 0.2m-0.3m of the erosion in the range of higher than 0.7m/s of flow velocity at the vegetated region. Salix gracilistyla has greater role than Phragmites japonica and Phragmites communis to sustain the stable channel. It has the mitigation function of 0.4m-0.5m of the erosion in the range of higher than 1.4m/s of flow velocity. Miscanthus sacchariflorus has a weak role compared with that of Phragmites japonica and Salix gracilistyla, but it has still function for sustaining the stable bed. From these results, the vegetation has effective roles to mitigate the erosion or to facilitate the deposition of the stream bed.

Keywords: aquatic plants, Phragmites japonica, Phragmites communis, Salix gracilistyla

Procedia PDF Downloads 358
3163 3D Model of Rain-Wind Induced Vibration of Inclined Cable

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.

Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model

Procedia PDF Downloads 457
3162 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 168
3161 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses

Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar

Abstract:

To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.

Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G

Procedia PDF Downloads 507
3160 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 184
3159 Critical Thinking Index of College Students

Authors: Helen Frialde-Dupale

Abstract:

Critical thinking Index (CTI) of 150 third year college students from five State Colleges and Universities (SUCs) in Region I were determined. Only students with Grade Point Average (GPA) of at least 2.0 from four general classification of degree courses, namely: Education, Arts and Sciences, Engineering and Agriculture were included. Specific problem No.1 dealt with the profile variables, namely: age, sex, degree course, monthly family income, number of siblings, high school graduated from, grade point average, personality type, highest educational attainment of parents, and occupation of parents. Problem No. 2 determined the critical thinking index among the respondents. Problem No. 3 investigated whether or not there are significant differences in the critical thinking index among the respondents across the profile variables. While problem No.4 determined whether or not there are significant relationship between the critical thinking index and selected profile variables, namely: age, monthly family income, number of siblings, and grade point average of the respondents. Finally, on problem No. 5, the critical thinking instrument which obtained the lowest rates, were used as basis for outlining an intervention program for enhancing critical thinking index (CTI) of students. The following null hypotheses were tested at 0.05 level of significance: there are no significant differences in the critical thinking index of the third college students across the profile variables; there are no significant relationships between the critical thinking index of the respondents and selected variables, namely: age, monthly family income, number of siblings, and grade point average.

Keywords: attitude as critical thinker, critical thinking applied, critical thinking index, self-perception as critical thinker

Procedia PDF Downloads 489
3158 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 436
3157 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: compressive strength, coupling effect, statistical analysis, ultrasonic

Procedia PDF Downloads 297
3156 Physicochemical and Biochemical Characterization of an Oil of Pistacia Lentiscus Fruits and Its Effects on Blood Lipid Profile (10364 EJSR)

Authors: Merzougui Imene, Gherib Asma, Henchiri Cherifa

Abstract:

This study has allowed to confirm the physico chemical characteristics and fatty acid composition by GC of the oil of Pistacia lentiscus extracted by traditional method and evaluate its effect on some blood lipid parameters. The results showed that the main physico chemical characteristics of Pistacia lentiscus oil are: moisture (0.84 %), a relatively high iodine value (80,44) indicating that this oil has an important degree of unsaturation. The oil is mainly composed of unsaturated fatty acids (MUFA) where oleic acid dominate with 47,01 % of total fatty acids and PUFA's represented by linoleic acid (19,26 %). Concerning the biological survey, oil, at 10% and 20% doses of diet for 15 and 30 days of two periods of treatment, resulted in beneficial effects on the lipid profile of Wistar albinos rats previously fed with animal and vegetable fats. We observed decreases in total cholesterol, triglycerides (TGA), total lipids and LDL-C, and an increase in HDL-C "good cholesterol" probably related to the presence of a large amount of (MUFA) and (PUFA).

Keywords: Pistacia lentiscus, oil, lipid profile, monounsaturated fatty acids, polyunsaturated fatty acids

Procedia PDF Downloads 328
3155 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 177
3154 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow

Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden

Abstract:

The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.

Keywords: acoustic doppler Velocimeter, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines

Procedia PDF Downloads 45
3153 Job Satisfaction among Public and Private Universities in Egypt Related to Organizational and Personal Aspects

Authors: Reem Alkadeem

Abstract:

This study aims at evaluating the overall satisfaction of faculty members and relating it to organizational and personal aspects in Egyptian public and private universities. These aspects are identified through an extensive study of all factors that might affect job satisfaction. The most influencing parameters selected are academics’ demographics, human resource management, organizational profile, workload, teamwork skills, recognition, autonomy, teaching activity, research activity, and motivation. A questionnaire of 94 questions was used to assess job satisfaction and the previously mentioned parameters. It was distributed among seven hundred members of different universities in Egypt. Two hundred and twenty-seven faculty members responded. This sample was gathered from twelve universities and The Supreme Council of Universities. The ANOVA showed a significant relationship (p < 0.05) between eight of the selected parameters and job satisfaction. These parameters are age, rank, human resource management, profile of organizational characteristics, workload, recognition, teaching activity, and motivation.

Keywords: job satisfaction, higher education, organizational profile, Egyptian universities

Procedia PDF Downloads 450
3152 Harvesting of Kinetic Energy of the Raindrops

Authors: K. C. R.Perera, V. P. C Dassanayake, B. M. Hapuwatte, B. G. Smapath

Abstract:

This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane.

Keywords: raindrop, piezoelectricity, deformation, terminal velocity

Procedia PDF Downloads 295
3151 A Unification and Relativistic Correction for Boltzmann’s Law

Authors: Lloyd G. Allred

Abstract:

The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.

Keywords: cosmology, EMP, plasma physics, relativity

Procedia PDF Downloads 192
3150 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 134
3149 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 253