Search results for: vehicle door
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1534

Search results for: vehicle door

1204 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option

Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu

Abstract:

Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.

Keywords: electric vehicles, forecasting, mixed integer programming, one-way carsharing

Procedia PDF Downloads 102
1203 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 98
1202 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system

Procedia PDF Downloads 95
1201 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 142
1200 Short-Term Association of In-vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers

Authors: Melissa Hachem, Maxime Loizeau, Nadine Saleh, Isabelle Momas, Lynda Bensefa-Colas

Abstract:

Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm³ and BC concentrations from 2.2 to 3.9 μg/m³, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25–75% by −7.44% [95% CI: −12.63 to −2.24], forced expiratory volume in one second by −4.46% [95% CI: −6.99 to −1.93] and forced vital capacity by −3.31% [95% CI: −5.82 to −0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. This study is the first to show a significant association, within a short-period of time, between in-vehicle UFP exposure and acute respiratory effects in professional drivers.

Keywords: black carbon, lung function, mucosal irritation, taxi drivers, ultrafine particles

Procedia PDF Downloads 150
1199 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 367
1198 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles

Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong

Abstract:

A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.

Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test

Procedia PDF Downloads 369
1197 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 39
1196 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch

Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng

Abstract:

Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.

Keywords: creeping control strategy, direct shift gearbox, temperature variation, wet clutch

Procedia PDF Downloads 103
1195 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context

Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati

Abstract:

For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.

Keywords: advertising, mascot, branding, recall

Procedia PDF Downloads 306
1194 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 98
1193 Reduction of Aerodynamic Drag Using Vortex Generators

Authors: Siddharth Ojha, Varun Dua

Abstract:

Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.

Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization

Procedia PDF Downloads 195
1192 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 56
1191 Transition 1970 Volkswagen Beetle from Internal Combustion Engine Vehicle to Electric Vehicle, Modeling and Simulation

Authors: Jamil Khalil Izraqi

Abstract:

This paper investigates the transition of a 1970 Volkswagen Beetle from an internal combustion engine (ICE) to an EV using Matlab/Simulink modeling and simulation. The performance of the EV drivetrain system was simulated under various operating conditions, including standard and custom driving cycles in Turkey and Jordan (Amman), respectively. The results of this paper indicate that the transition is viable and that modeling and simulation can help in understanding the performance and efficiency of the electric drivetrain system, including battery pack, power electronics, and brushless direct current (BLDC) Motor.

Keywords: BLDC, buck-boost, inverter, SOC, drive-cycle

Procedia PDF Downloads 74
1190 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 370
1189 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 175
1188 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 81
1187 An Architecture Framework for Design of Assembly Expert System

Authors: Chee Fai Tan, L. S. Wahidin, S. N. Khalil

Abstract:

Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry.

Keywords: design of assembly, expert system, vehicle seat, mechanical engineering

Procedia PDF Downloads 419
1186 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)

Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud

Abstract:

Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.

Keywords: electric vehicle, redox flow battery, packaging, vanadium

Procedia PDF Downloads 401
1185 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 86
1184 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis

Procedia PDF Downloads 320
1183 Differential Signaling Spread-Spectrum Modulation of the In-Door LED Visible Light Wireless Communications using Mobile-Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Visible light communication combined with spread spectrum modulation is demonstrated in this study. Differential signaling method also ensures the proposed system that can support high immunity to ambient light interference. Experiment result shows the proposed system has 6 dB gain comparing with the original On-Off Keying modulation scheme.

Keywords: Visible Light Communication (VLC), Spread Spectrum Modulation (SSM), On-Off Keying, visible light communication

Procedia PDF Downloads 490
1182 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression

Procedia PDF Downloads 536
1181 Communication Infrastructure Required for a Driver Behaviour Monitoring System, ‘SiaMOTO’ IT Platform

Authors: Dogaru-Ulieru Valentin, Sălișteanu Ioan Corneliu, Ardeleanu Mihăiță Nicolae, Broscăreanu Ștefan, Sălișteanu Bogdan, Mihai Mihail

Abstract:

The SiaMOTO system is a communications and data processing platform for vehicle traffic. The human factor is the most important factor in the generation of this data, as the driver is the one who dictates the trajectory of the vehicle. Like any trajectory, specific parameters refer to position, speed and acceleration. Constant knowledge of these parameters allows complex analyses. Roadways allow many vehicles to travel through their confined space, and the overlapping trajectories of several vehicles increase the likelihood of collision events, known as road accidents. Any such event has causes that lead to its occurrence, so the conditions for its occurrence are known. The human factor is predominant in deciding the trajectory parameters of the vehicle on the road, so monitoring it by knowing the events reported by the DiaMOTO device over time, will generate a guide to target any potentially high-risk driving behavior and reward those who control the driving phenomenon well. In this paper, we have focused on detailing the communication infrastructure of the DiaMOTO device with the traffic data collection server, the infrastructure through which the database that will be used for complex AI/DLM analysis is built. The central element of this description is the data string in CODEC-8 format sent by the DiaMOTO device to the SiaMOTO collection server database. The data presented are specific to a functional infrastructure implemented in an experimental model stage, by installing on a number of 50 vehicles DiaMOTO unique code devices, integrating ADAS and GPS functions, through which vehicle trajectories can be monitored 24 hours a day.

Keywords: DiaMOTO, Codec-8, ADAS, GPS, driver monitoring

Procedia PDF Downloads 45
1180 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem

Authors: Fatemeh Torfi

Abstract:

Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.

Keywords: fuzzy least-squares, stochastic, location, routing problems

Procedia PDF Downloads 401
1179 The Element of Episode and Idea in the Descriptive Poetry of Hutai'A

Authors: Abubakar Ismaila Yusuf

Abstract:

This research studied element of episode (events) and idea in the descriptive poetry of Hutai’a with the intention to sale the opinion of this type of analysis to others, and also encourage and open door for researchers that thinks only in drama and novel those elements can be implemented. The research uses explanatory method to point out the element of episode and ideology from the said poetry to show that the same element of drama can be seen in poetry. The research finds that element of drama and novel can be seen and implemented analytically in dramatic and some descriptive poetry and its likes. The researcher finally advice colleague to widened scope of research and always think of modernizing it.

Keywords: Hutai'a, poetry, drama, novel

Procedia PDF Downloads 319
1178 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India

Authors: Chetan R. Patel, G. J. Joshi

Abstract:

The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.

Keywords: arterial road, capacity, dynamic equivalency factor, effect of non motorized mode, side friction

Procedia PDF Downloads 326
1177 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration

Authors: Amir Abdelqodus, Mario Shehata

Abstract:

The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.

Keywords: aerodynamics, CFD, potential flow, UAV, VTOL

Procedia PDF Downloads 409
1176 The Role of Car Dealerships in Promoting Electric Vehicles: Covert Participatory Observations of Car Dealerships in Sweden

Authors: Anne Y. Faxer, Ellen Olausson, Jens Hagman, Ana Magazinius, Jenny J. Stier, Tommy Fransson, Oscar Enerback

Abstract:

While electric vehicles (both battery electric vehicles and plug-in hybrids) have been on the market for around 6 years, they are still far from mainstream and the knowledge of them is still low among the public. This is likely one of the reasons that Sweden, having one of the highest penetrations of electric vehicles in Europe, still has a long way to go in reaching a fossil free vehicle fleet. Car dealerships are an important medium that connects consumers to vehicles, but somehow, their role in introducing electric vehicles has not yet been thoroughly studied. Research from other domains shows that salespeople can affect customer decisions in their choice of products. The aim of this study is to explore the role of car dealerships when it comes to promoting electric vehicles. The long-term goal is to understand how they could be a key in the effort of achieving a mass introduction of electric vehicles in Sweden. By emulating the customer’s experience, this study investigates the interaction between car salespeople and customers, particularly examining whether they present electric vehicles as viable options. Covert participatory observations were conducted for data collection from four different brands at in total twelve car dealers. The observers worked in pairs and played the role of a customer with needs that could be matched by an electric vehicle. The data was summarized in observation protocols and analyzed using thematic coding. The result shows that only one of twelve salespeople offered an electric vehicle as the first option. When environmental factors were brought up by the observers, the salespeople followed up with lower fuel consumption internal combustion engine vehicles rather than suggesting an electric vehicle. All salespeople possessed at least basic knowledge about electric vehicles but their interest of selling them were low in most cases. One of the reasons could be that the price of electric vehicles is usually higher. This could be inferred from the finding that salespeople tend to have a strong focus on price and economy in their dialogues with customers, regardless which type of car they were selling. In conclusion, the study suggests that car salespeople have the potential to help the market to achieve mass introduction of electric vehicles; however, their potential needs to be exploited further. To encourage salespeople to prioritize electric vehicles in the sales process, right incentives need to be in place.

Keywords: car dealerships, covert participatory observation, customer perspective , electric vehicle, market penetration

Procedia PDF Downloads 163
1175 Sliding Mode Control for Active Suspension System with Actuator Delay

Authors: Aziz Sezgin, Yuksel Hacioglu, Nurkan Yagiz

Abstract:

Sliding mode controller for a vehicle active suspension system is designed in this study. The widely used quarter car model is preferred and it is aimed to improve the ride comfort of the passengers. The effect of the actuator time delay, which may arise due to the information processing, sensors or actuator dynamics, is also taken into account during the design of the controller. A sliding mode controller was designed that has taken into account the actuator time delay by using Smith predictor. The successful performance of the designed controller is confirmed via numerical results.

Keywords: sliding mode control, active suspension system, actuator, time delay, vehicle

Procedia PDF Downloads 380