Search results for: ultra-sonic pulse
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 850

Search results for: ultra-sonic pulse

580 Effect of Transmission Distance on the Performance of Hybrid Configuration Using Non Return to Zero (NRZ) Pulse Format

Authors: Mais Wa'ad

Abstract:

The effect of transmission distance on the performance of hybrid configuration H 10-40 Gb/s with Non-Return to Zero (NRZ) pulse format, 100 GHz channel spacing, and Multiplexer/De-Multiplexer Band width (MUX/DEMUX BW) of 60 GHz has been investigated in this study. The laser Continuous Wave (CW) power launched into the modulator is set to 4 dBm. Eight neighboring DWDM channels are selected around 1550.12 nm carrying different data rates in hybrid optical communication systems travel through the same optical fiber and use the same passive and active optical modules. The simulation has been done using Optiwave Inc Optisys software. Usually, increasing distance will lead to decrease in performance; however this is not always the case, as the simulation conducted in this work, shows different system performance for each channel. This is due to differences in interaction between dispersion and non-linearity, and the differences in residual dispersion for each channel.

Keywords: dispersion and non-linearity interaction, optical hybrid configuration, multiplexer/de multiplexer bandwidth, non-return to zero, optical transmission distance, optisys

Procedia PDF Downloads 536
579 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 188
578 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 36
577 Spin-Dipole Excitations Produced On-Demand in the Fermi Sea

Authors: Mykhailo Moskalets, Pablo Burset, Benjamin Roussel, Christian Flindt

Abstract:

The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation.

Keywords: Andreev level, on-demand, single-electron, spin-dipole

Procedia PDF Downloads 53
576 Fuzzy Logic Driven PID Controller for PWM Based Buck Converter

Authors: Bandreddy Anand Babu, Mandadi Srinivasa Rao, Chintala Pradeep Reddy

Abstract:

The main theme of this paper is to design fuzzy logic Proportional Integral Derivative controller for controlling of Pulse Width Modulator (PWM) based DCDC buck converter in continuous conduction mode of operation and comparing the results of FPID and ANFIS. Simulation is done to fuzzy the given input variables and membership functions of input values, creating the interference rules linking the input and output variables and after then defuzzfies the output variables. Fuzzy logic is simple for nonlinear models like buck converter. Fuzzy logic based PID controller technique is to control, nonlinear plants like buck converters in switching variables of power electronics. The characteristics of FPID are in terms of rise time, settling time, rise time, steady state errors for different inputs and load disturbances.

Keywords: fuzzy logic, PID controller, DC-DC buck converter, pulse width modulation

Procedia PDF Downloads 974
575 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition

Procedia PDF Downloads 525
574 Droplet Impact on a High Frequency Vibrating Surface

Authors: Maryam Ebrahimiazar, Parsia Mohammadshahi, Amirreza Amighi, Nasser Ashgriz

Abstract:

Ultrasonic atomization is used to generate micron size aerosols. In this work, the aerosol formation by the atomization of a parent droplet dripping from a capillary needle onto the surface of a Teflon coated piezoelectric vibrating at 2.5 MHz is studied, and different steps of atomization are categorized. After the droplet impacts on the piezoelectric, surface acoustic streaming deforms the droplet into a fountain shape. This fountain soon collapses and forms a liquid layer. The breakup of the liquid layer results in the generation of both large ( 100 microns) and small drops (few microns). Next, the residual drops from the liquid layer start to be atomized to generate few micron size droplets. The high velocity and explosive aerosol formation in this step are better explained in terms of cavitation theory. However, the combination of both capillary waves and cavitation theory seem to be responsible for few-micron droplet generation. The current study focuses on both qualitative and quantitative aspects of fountain formation for both ethyl-alcohol and water. Even though the general steps of atomization are the same for both liquids, the quantitative results indicate that some noticeable differences lie between them.

Keywords: droplet breakup, ultrasonic atomization, acoustic streaming, droplet oscillation

Procedia PDF Downloads 144
573 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 186
572 Design, Construction and Characterization of a 3He Proportional Counter for Detecting Thermal Neutron

Authors: M. Fares, S. Mameri, I. Abdlani, K. Negara

Abstract:

Neutron detectors in general, proportional counters gas filling based isotope 3He in particular are going to be essential for monitoring and control of certain nuclear facilities, monitoring of experimentation around neutron beams and channels nuclear research reactors, radiation protection instruments and other tools multifaceted exploration and testing of materials, etc. This work consists of a measurement campaign features two Proportional Counters 3He (3He: LND252/USA CP, CP prototype: 3He LND/DDM). This is to make a comparison study of a CP 3He LND252/USA reference one hand, and in the context of routine periodic monitoring of the characteristics of the detectors for controlling the operation especially for laboratory prototypes. In this paper, we have described the different characteristics of the detectors and the experimental protocols used. Tables of measures have been developed and the different curves were plotted. The experimental campaign at stake: 2 PC 3He were thus characterized: Their characteristics (sensitivity, energy pulse height distribution spectra, gas amplification etc.) Were identified: 01 PC 3He 1'' Type: prototype DEDIN/DDM, 01 PC 3He 1'' Type: LND252/USA.

Keywords: PC 3He, sensitivity, pulse height distribution spectra, gas amplification

Procedia PDF Downloads 412
571 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves

Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman

Abstract:

The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.

Keywords: Ficus, ultrasounds, vitexin, isovitexin

Procedia PDF Downloads 381
570 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis

Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal

Abstract:

Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.

Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V

Procedia PDF Downloads 341
569 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired

Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo

Abstract:

The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.

Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module

Procedia PDF Downloads 386
568 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk

Authors: Radhika Jain, Sangeeta Goomer

Abstract:

In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.

Keywords: extrusion, NDpCal%, protein quality, wadi

Procedia PDF Downloads 207
567 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia PDF Downloads 252
566 Ultrasonic Assessment of Corpora lutea and Plasma Progesterone Levels in Early Pregnant and Non Pregnant Cows

Authors: Abdurraouf O. Gaja, Salah Y. A. Al-Dahash, Guru Solmon Raju, Chikara Kubota

Abstract:

Corpus luteum cross sectional (by ultrasonography) and plasma progesterone (by DELFIA) were estimated in early pregnant and non pregnant cows on days 14th and 20th to 23rd post insemination. On day 14th, corpus luteum sectional area was 348.43 mm2 in pregnant and 387.84mm2 in non pregnant cows. Within days 20th to 23rd, corpus luteum sectional area ranged between 342.06 and 367.90 mm2 in pregnant and between 193.85 and 270.69 mm2 in non pregnant cows. Plasma progesterone level was 2.43 ng/ml in pregnant and 2.46 ng/ml in non pregnant cows on day 14th, while during days 20th to 23rd the level ranged between 2.47 and 2,84 ng/ml in pregnant and between 0.53 and 1.17 ng/ml in non pregnant cows. Results of both luteal tissue areas as well as plasma progesterone levels were highly significantly deferent (P<0.01) between pregnant and non pregnant cows during days 20th to 23rd, but there were no significant differences on day 14th. The correlation between CL cross-sectional area and plasma progesterone level was 0.4 in pregnant cows and 0.99 in non pregnant cow. It is clear, from this study, that ultrasonic assessment of corpora lutea is a viable alternative to determine plasma progesterone levels for early pregnancy diagnosis in cows.

Keywords: progesterone, ultrasonography, corpus luteum, pregnancy diagnosis, cow

Procedia PDF Downloads 281
565 Investigation of Roll-Off Factor in Pulse Shaping Filter on Maximal Ratio Combining for CDMA 2000 System

Authors: G. S. Walia, H. P. Singh, D. Padma

Abstract:

The integration of wide variety of communication services is made possible with invention of 3G technology. Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps (1x or 3x systems). It is a 3G system which offers high bandwidth and wireless broadband services but its efficiency is lowered due to various factors like fading, interference, scattering, absorption etc. This paper investigates the effect of diversity (MRC), roll off factor in Root Raised Cosine (RRC) filter for the BPSK and QPSK modulation schemes. It is possible to transmit data with minimum Inter symbol Interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the roll off factor for BPSK and QPSK. Roll off factor reduces the ISI and diversity reduces the Fading.

Keywords: CDMA2000, root raised cosine, roll-off factor, ISI, diversity, interference, fading

Procedia PDF Downloads 381
564 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 148
563 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization

Procedia PDF Downloads 171
562 A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources

Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar

Abstract:

The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation.

Keywords: pulse laser, integral transform, thermoelastic, boundary value problem

Procedia PDF Downloads 583
561 Execution of Optimization Algorithm in Cascaded H-Bridge Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the harmonic elimination of Cascaded H-Bridge Multi-Level Inverter by using Selective Harmonic Elimination-Pulse Width Modulation method programmed with Particle Swarm Optimization algorithm. PSO method determine proficiently the required switching angles to eliminate low order harmonics up to the 11th order from the inverter output voltage waveform while keeping the magnitude of the fundamental harmonics at the desired value. Results demonstrate that the proposed method does efficiently eliminate a great number of specific harmonics and the output voltage is resulted in minimum Total Harmonic Distortion. The results shown that the PSO algorithm attain successfully to the global solution faster than other algorithms.

Keywords: multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Particle Swarm Optimization (PSO), Total Harmonic Distortion (THD)

Procedia PDF Downloads 577
560 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 487
559 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: EDM, electrode, MRR, RSM, ANOVA

Procedia PDF Downloads 267
558 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 255
557 A Focused, High-Intensity Spread-Spectrum Ultrasound Solution to Prevent Biofouling

Authors: Alan T. Sassler

Abstract:

Biofouling is a significant issue for ships, especially those based in warm water ports. Biofouling damages hull coatings, degrades platform hydrodynamics, blocks cooling water intakes, and returns, reduces platform range and speed, and increases fuel consumption. Although platforms are protected to some degree by antifouling paints, these paints are much less effective on stationary platforms, and problematic biofouling can occur on antifouling paint-protected stationary platforms in some environments in as little as a matter of weeks. Remediation hull cleaning operations are possible, but they are very expensive, sometimes result in damage to the vessel’s paint or hull and are generally not completely effective. Ultrasound with sufficient intensity focused on specific frequency ranges can be used to prevent the growth of biofouling organisms. The use of ultrasound to prevent biofouling isn't new, but systems to date have focused on protecting platforms by shaking the hull using internally mounted transducers similar to those used in ultrasonic cleaning machines. While potentially effective, this methodology doesn't scale well to large platforms, and there are significant costs associated with installing and maintaining these systems, which dwarf the initial purchase price. An alternative approach has been developed, which uses highly directional pier-mounted transducers to project high-intensity spread-spectrum ultrasonic energy into the water column focused near the surface. This focused energy has been shown to prevent biofouling at ranges of up to 50 meters from the source. Spreading the energy out over a multi-kilohertz band makes the system both more effective and more environmentally friendly. This system has been shown to be both effective and inexpensive in small-scale testing and is now being characterized on a larger scale in selected marinas. To date, test results have been collected in Florida marinas suggesting that this approach can be used to keep ensonified areas of thousands of square meters free from biofouling, although care must be taken to minimize shaded areas.

Keywords: biofouling, ultrasonic, environmentally friendly antifoulant, marine protection, antifouling

Procedia PDF Downloads 32
556 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 386
555 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 192
554 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 40
553 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection

Authors: Jarek Krajewski, David Daxberger

Abstract:

We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.

Keywords: heart rate, PPGI, machine learning, brute force feature extraction

Procedia PDF Downloads 100
552 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency

Authors: Haruo Okabayashi

Abstract:

Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.

Keywords: anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE

Procedia PDF Downloads 217
551 Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method

Authors: Yong Pan, Li Wang, Xue Qiong Su, Dong Wen Gao

Abstract:

To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga0.3Co0.3ZnSe0.4. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.

Keywords: PLA, physics, nanoparticles, multi-doped

Procedia PDF Downloads 122