Search results for: ultra-low frequency waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4469

Search results for: ultra-low frequency waves

4109 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location

Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa

Abstract:

This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.

Keywords: specific absorption rate (SAR), ultra wideband (UWB), coordinates, cancer detection

Procedia PDF Downloads 380
4108 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: deadline, dynamic voltage frequency scaling, power state transition

Procedia PDF Downloads 429
4107 First and Second Order Gm-C Filters

Authors: Rana Mahmoud

Abstract:

This study represents a systematic study of the Operational Transconductance Amplifiers capacitance (OTA-C) filters or as it is often called Gm-C filters. OTA-C filters have been paid a great attention for the last decades. As Gm-C filters operate in an open loop topology, this makes them flexible to perform in low and high frequencies. As such, Gm-C filters can be used in various wireless communication applications. Another property of Gm-C filters is its electronic tunability, thus different filter frequency characteristics can be obtained without changing the inductance and resistance values. This can be achieved by an OTA (Operational Transconductance Amplifier) and a capacitor. By tuning the OTA transconductance, the cut-off frequency will be tuned and different frequency responses are achieved. Different high-order analog filters can be design using Gm-C filters including low pass, high pass and band pass filters. 1st and 2nd order low pass, high pass and band pass filters are presented in this paper.

Keywords: Gm-C, filters, low-pass, high-pass, band-pass

Procedia PDF Downloads 98
4106 Vibration of Gamma Graphyne with an Attached Mass

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

Atomic finite element simulation is applied to investigate the vibration frequency of a single-layer gamma graphyne with an attached mass for the CCCC, SSSS, CFCF, SFSF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphyne sheet are compared with the results of the previous study. The results of the comparison are very good in all considered cases. The attached mass causes a shift in the resonant frequency of the graphyne. The frequencies of the single-layer gamma graphyne with an attached mass for different boundary conditions are obtained, and the order based on the boundary condition is CCCC >SSSS > CFCF> SFSF. The highest frequency shift is obtained when the attached mass is located at the center of the graphyne sheet. This is useful for the design of a highly sensitive graphyne-based mass sensor.

Keywords: graphyne, finite element analysis, vibration analysis, frequency shift

Procedia PDF Downloads 187
4105 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model

Procedia PDF Downloads 321
4104 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank

Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani

Abstract:

This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.

Keywords: induction heating, AVC control, CDM, PLL, resonant inverter

Procedia PDF Downloads 632
4103 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers

Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan

Abstract:

This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.

Keywords: power distribution, megasonic sweeping, cavitation intensity, particle removal, laser particle counting, nano, submicron

Procedia PDF Downloads 397
4102 Role of Self-Concept in the Relationship between Emotional Abuse and Mental Health of Employees in the North West Province, South Africa

Authors: L. Matlawe, E. S. Idemudia

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modeling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they were designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: emotional abuse, employees, mental health, self-concept

Procedia PDF Downloads 222
4101 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 128
4100 Haemoglobin Variants and Their Frequency Distribution in Human Population of Niger State, Nigeria

Authors: Akeem Akinboro, Bala Alhaj Kegun

Abstract:

Haemoglobinopathy is a genetic disorder that has the potentiality to cause death of individuals in whom both the alpha (α) and beta (β) globin chains of the haemoglobin molecule are defective due to mutations in their genes. The haemoglobin genotype variants among some residents of Niger state, Nigeria, were determined using the secondary data available at Bida, Minna and Kotangora general hospitals of the state. A total of 1,639 data, representing 434, 655 and 550, collected from the outside patients who visited the medical laboratory units of the three general hospitals, respectively, over five years period (2015-2020) were analyzed into gene frequency, sex and age to determine their haemoglobin genotypes status. More males (51.6 – 58.7%) than females (41.3 – 48.4%) visited the three hospitals during the period covered and most of the patients were between 11 - 20 years old. The frequency of HbA allele in the human population was 0.72, 0.65, 0.68 for Bida, Minna and Kotangora, respectively, while it was 0.25, 0.29 and 0.28 for HbS allele. The HbC allele was prevalent at 0.03, 0.06 and 0.05 among the human population in Bida, Minna and Kotangora cities of Niger state. In overall, the prevalence of HbA, HbS and HbC alleles in Niger state of Nigeria was 0.68, 0.28 and 0.05. Minna being the capital city of Niger state and the most populous among the three cities in the state seems to have influx of more people who are carriers of abnormal haemoglobin genotypes which has resulted to higher frequency of HbS and HbC than those of the other two cities in this study. These results show that the pattern of haemoglobin genotypes frequency of Kontagora could be a prediction for the whole of Niger state. It is therefore necessary and important to take screening of blood for haemoglobin genotype serious among intending couples to prevent and reduce the possibility of having increase in the number of people with abnormal haemoglobin genotypes in the state.

Keywords: haemoglobin, genotype, niger state, gene frequency, general hospitals

Procedia PDF Downloads 68
4099 Analyzing the Sound of Space - The Glissando of the Planets and the Spiral Movement on the Sound of Earth, Saturn and Jupiter

Authors: L. Tonia, I. Daglis, W. Kurth

Abstract:

The sound of the universe creates an affinity with the sounds of music. The analysis of the sound of space focuses on the existence of a tone material, the microstructure and macrostructure, and the form of the sound through the signals recorded during the flight of the spacecraft Van Allen Probes and Cassini’s mission. The sound becomes from the frequencies that belong to electromagnetic waves. Plasma Wave Science Instrument and Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) recorded the signals from space. A transformation of that signals to audio gave the opportunity to study and analyze the sound. Due to the fact that the musical tone pitch has a frequency and every electromagnetic wave produces a frequency too, the creation of a musical score, which appears as the sound of space, can give information about the form, the symmetry, and the harmony of the sound. The conversion of space radio emissions to audio provides a number of tone pitches corresponding to the original frequencies. Through the process of these sounds, we have the opportunity to present a music score that “composed” from space. In this score, we can see some basic features associated with the music form, the structure, the tone center of music material, the construction and deconstruction of the sound. The structure, which was built through a harmonic world, includes tone centers, major and minor scales, sequences of chords, and types of cadences. The form of the sound represents the symmetry of a spiral movement not only in micro-structural but also to macro-structural shape. Multiple glissando sounds in linear and polyphonic process of the sound, founded in magnetic fields around Earth, Saturn, and Jupiter, but also a spiral movement appeared on the spectrogram of the sound. Whistles, Auroral Kilometric Radiations, and Chorus emissions reveal movements similar to musical excerpts of works by contemporary composers like Sofia Gubaidulina, Iannis Xenakis, EinojuhamiRautavara.

Keywords: space sound analysis, spiral, space music, analysis

Procedia PDF Downloads 148
4098 Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Authors: Subal Kar, Madhuja Ghosh, Amitesh Kumar, Arijit Majumder

Abstract:

Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.

Keywords: split ring resonator, metamaterial, CSRR loaded patch antenna, microstrip patch antenna, LC resonator

Procedia PDF Downloads 334
4097 Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy

Authors: M. D. Fontana, I. Bejaoui Ouni, D. Chapron, H. Aroui

Abstract:

BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials.

Keywords: BaTiO3, Raman spectroscopy, frequency, damping, anharmonic potential

Procedia PDF Downloads 279
4096 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient

Procedia PDF Downloads 361
4095 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 262
4094 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 80
4093 A Study on the Pulse Transformer Design Considering Inrush Current in the Welding Machine

Authors: In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

An Inverter type arc-welding machine is inclined to be designed for higher frequency in order to reduce the size and cost. The need of the core material reconsideration for high frequency pulse transformer is more important since core loss grows as the frequency rises. An arc welding machine’s pulse transformer is designed using an Area Product (Ap) method and is considered margin air gap core design in order to prevent the burning of the IGBT by the inrush current. Finally, the reduction of the core weight and the core size are compared according to different materials for 30kW inverter type arc welding machine.

Keywords: pulse transformers, welding, inrush current, air gaps

Procedia PDF Downloads 427
4092 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 328
4091 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 176
4090 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 407
4089 Mid-Winter Stratospheric Warming Effects on Equatorial Dynamics over Peninsular India

Authors: SHWETA SRIKUMAR

Abstract:

Winter stratospheric dynamics is a highly variable and spectacular field of research in middle atmosphere. It is well believed that the interaction of energetic planetary waves with mean flow causes the temperature to increase in the stratosphere and associated circulation reversal. This wave driven sudden disturbances in the polar stratosphere is defined as Sudden Stratospheric Warming. The main objective of the present work is to investigate the mid-winter major stratospheric warming events on equatorial dynamics over Peninsular India. To explore the effect of mid-winter stratospheric warming on Indian region (60oE -100oE), we have selected the winters 2003/04, 2005/06, 2008/09, 2012/13 and 2018/19. This study utilized the data from ERA-Interim Reanalysis, Outgoing Longwave Radiation (OLR) from NOAA and TRMM satellite data from NASA mission. It is observed that a sudden drop in OLR (averaged over Indian Region) occurs during the course of warming for the winters 2005/06, 2008/09 and 2018/19. But in winters 2003/04 and 2012/13, drop in OLR happens prior to the onset of major warming. Significant amplitude of planetary wave activity is observed in equatorial lower stratosphere which indicates the propagation of extra-tropical planetary waves from high latitude to equator. During the course of warming, a strong downward propagation of EP flux convergence is observed from polar to equator region. The polar westward wind reaches upto 20oN and the weak eastward wind dominates the equator during the winters 2003/04, 2005/06 and 2018/19. But in 2012/13 winter, polar westward wind reaches upto equator. The equatorial wind at 2008/09 is dominated by strong westward wind. Further detailed results will be presented in the conference.

Keywords: Equatorial dynamics, Outgoing Longwave Radiation, Sudden Stratospheric Warming, Planetary Waves

Procedia PDF Downloads 118
4088 Modeling of Long Wave Generation and Propagation via Seabed Deformation

Authors: Chih-Hua Chang

Abstract:

This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field.

Keywords: seismic wave, wave generation, far-field waves, seabed deformation

Procedia PDF Downloads 63
4087 Algae Growth and Biofilm Control by Ultrasonic Technology

Authors: Vojtech Stejskal, Hana Skalova, Petr Kvapil, George Hutchinson

Abstract:

Algae growth has been an important issue in water management of water plants, ponds and lakes, swimming pools, aquaculture & fish farms, gardens or golf courses for last decades. There are solutions based on chemical or biological principles. Apart of these traditional principles for inhibition of algae growth and biofilm production there are also physical methods which are very competitive compared to the traditional ones. Ultrasonic technology is one of these alternatives. Ultrasonic emitter is able to eliminate the biofilm which behaves as a host and attachment point for algae and is original reason for the algae growth. The ultrasound waves prevent majority of the bacteria in planktonic form becoming strongly attached sessile bacteria that creates welcoming layer for the biofilm production. Biofilm creation is very fast – in the serene water it takes between 30 minutes to 4 hours, depending on temperature and other parameters. Ultrasound device is not killing bacteria. Ultrasound waves are passing through bacteria, which retract as if they were in very turbulent water even though the water is visually completely serene. In these conditions, bacteria does not excrete the polysaccharide glue they use to attach to the surface of the pool or pond, where ultrasonic technology is used. Ultrasonic waves decrease the production of biofilm on the surfaces in the selected area. In case there are already at the start of the application of ultrasonic technology in a pond or basin clean inner surfaces, the biofilm production is almost absolutely inhibited. This paper talks about two different pilot applications – one in Czech Republic and second in United States of America, where the used ultrasonic technology (AlgaeControl) is coming from. On both sites, there was used Mezzo Ultrasonic Algae Control System with very positive results not only on biofilm production, but also algae growth in the surrounding area. Technology has been successfully tested in two different environments. The poster describes the differences and their influence on the efficiency of ultrasonic technology application. Conclusions and lessons learned can be possibly applied also on other sites within Europe or even further.

Keywords: algae growth, biofilm production, ultrasonic solution, ultrasound

Procedia PDF Downloads 235
4086 Experimental Partial Discharge Localization for Internal Short Circuits of Transformers Windings

Authors: Jalal M. Abdallah

Abstract:

This paper presents experimental studies carried out on a three phase transformer to investigate and develop the transformer models, which help in testing procedures, describing and evaluating the transformer dielectric conditions process and methods such as: the partial discharge (PD) localization in windings. The measurements are based on the transfer function methods in transformer windings by frequency response analysis (FRA). Numbers of tests conditions were applied to obtain the sensitivity frequency responses of a transformer for different type of faults simulated in a particular phase. The frequency responses were analyzed for the sensitivity of different test conditions to detect and identify the starting of small faults, which are sources of PD. In more detail, the aim is to explain applicability and sensitivity of advanced PD measurements for small short circuits and its localization. The experimental results presented in the paper will help in understanding the sensitivity of FRA measurements in detecting various types of internal winding short circuits in the transformer.

Keywords: frequency response analysis (FRA), measurements, transfer function, transformer

Procedia PDF Downloads 257
4085 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker

Authors: Jong Won, Park, Sung Hyun, Kim

Abstract:

The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.

Keywords: impact energy, impact frequency, hydraulic breaker, life prediction

Procedia PDF Downloads 410
4084 A Numerical Study of the Tidal Currents in the Persian Gulf and Oman Sea

Authors: Fatemeh Sadat Sharifi, A. A. Bidokhti, M. Ezam, F. Ahmadi Givi

Abstract:

This study focuses on the tidal oscillation and its speed to create a general pattern in seas. The purpose of the analysis is to find out the amplitude and phase for several important tidal components. Therefore, Regional Ocean Models (ROMS) was rendered to consider the correlation and accuracy of this pattern. Finding tidal harmonic components allows us to predict tide at this region. Better prediction of these tides, making standard platform, making suitable wave breakers, helping coastal building, navigation, fisheries, port management and tsunami research. Result shows a fair accuracy in the SSH. It reveals tidal currents are highest in Hormuz Strait and the narrow and shallow region between Kish Island. To investigate flow patterns of the region, the results of limited size model of FVCOM were utilized. Many features of the present day view of ocean circulation have some precedent in tidal and long- wave studies. Tidal waves are categorized to be among the long waves. So that tidal currents studies have indeed effects in subsequent studies of sea and ocean circulations.

Keywords: barotropic tide, FVCOM, numerical model, OTPS, ROMS

Procedia PDF Downloads 207
4083 Specific Frequency of Globular Clusters in Different Galaxy Types

Authors: Ahmed H. Abdullah, Pavel Kroupa

Abstract:

Globular clusters (GC) are important objects for tracing the early evolution of a galaxy. We study the correlation between the cluster population and the global properties of the host galaxy. We found that the correlation between cluster population (NGC) and the baryonic mass (Mb) of the host galaxy are best described as 10 −5.6038Mb. In order to understand the origin of the U -shape relation between the GC specific frequency (SN) and Mb (caused by the high value of SN for dwarfs galaxies and giant ellipticals and a minimum SN for intermediate mass galaxies≈ 1010M), we derive a theoretical model for the specific frequency (SNth). The theoretical model for SNth is based on the slope of the power-law embedded cluster mass function (β) and different time scale (Δt) of the forming galaxy. Our results show a good agreement between the observation and the model at a certain β and Δt. The model seems able to reproduce higher value of SNth of β = 1.5 at the midst formation time scale.

Keywords: galaxies: dwarf, globular cluster: specific frequency, number of globular clusters, formation time scale

Procedia PDF Downloads 297
4082 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 212
4081 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure

Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi

Abstract:

With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.

Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance

Procedia PDF Downloads 144
4080 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 291