Search results for: twisted intramolecular charge transfer
3591 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application
Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi
Abstract:
Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer
Procedia PDF Downloads 143590 Numerical Study on Enhancement of Heat Transfer by Turbulence
Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali
Abstract:
This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.Keywords: swirl flow, twisted tape, twist ratio, heat transfer
Procedia PDF Downloads 2593589 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions
Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov
Abstract:
In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium
Procedia PDF Downloads 3213588 Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts
Authors: Rajesh Kumar, Prabha Chand
Abstract:
Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature.Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio
Procedia PDF Downloads 2543587 Theoretical Evaluation of the Preparation of Polycyclic Benzimidazole Derivatives
Authors: M. Abdoul-Hakim, A. Zeroual, H. Garmes
Abstract:
In this work, the reaction of 2-chlorobenzimidazole with two distinct 1,3-dipoles such as benzonitrile N-oxide and an azomethine imine was carried out by DFT at the B3LYP/6-311+G(d, p) level to understand the effect of solvent (MeOH). The results show that MeOH has a significant effect on the evolution of the reaction. The charge transfer interactions n(O) → σ*(C-Cl), n(N)→σ*(C-Cl) and σ(N-C) →σ*(C-Cl) stabilize the transition states in an intramolecular nucleophilic substitution (SNi) step of the imidoyl group. Finally, this study provides a theoretical basis for the design of different polycyclic benzimidazole.Keywords: azomethine imine, benzonitrile N-oxide, DFT, intramolecular nucleophilic substitution (SNi), polycyclic benzimidazole
Procedia PDF Downloads 1213586 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts
Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh
Abstract:
In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow
Procedia PDF Downloads 2843585 X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3
Authors: Y. Megrous, A. Chouaih, F. Hamzaoui
Abstract:
The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.Keywords: electron charge density, net atomic charge, molecular dipole moment, X-ray diffraction
Procedia PDF Downloads 4543584 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts
Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy
Abstract:
Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (80003583 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound
Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui
Abstract:
Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment
Procedia PDF Downloads 4143582 Theoretical Evaluation of the Effect of Solvent on the Feasibility of the Reaction of 2-Chlorobenzimidazole With Four N,N′-Cyclic Azomethine Imines to Construct Polycyclic Benzimidazoles
Authors: Mohamed Abdoul-Hakim, A. Zeroual, H. Garmes
Abstract:
In this work, we theoretically evaluated the reactivity of four 4-methyl-3-oxo-1,2-pyrazolidinium ylides with 2-Chlorobenzimidazole in MeOH in basic medium using DFT at the B3LYP/6-311+G(d,p) level. The analysis of the results shows that apart from its ability to retain its electrons, the deprotonated 2-Chlorobenzimidazole has a higher nucleophilic character. The reaction requires energy input to initiate the nucleophilic attack of the 2-Chlorobenzimidazole anion, and the inclusion of the solvent effect facilitates the formation of two regioisomers via an intramolecular vinyl nucleophilic substitution (SNVi). The transition states of this latter step are stabilized by charge transfer interactions σ(N-C) →σ*(C-Cl) for the more favorable regioisomer and n(N)→σ*(C-Cl) for the other regioisomer.Keywords: benzonitrile N-oxide, DFT, intramolecular vinyl nucleophilic substitution (SNVi), 4-methyl-3-OXO-1, 2-pyrazolidinium ylides
Procedia PDF Downloads 1373581 Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert
Authors: Rajesh Kumar, Prabha Chand
Abstract:
The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others.Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio
Procedia PDF Downloads 2643580 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 723579 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound
Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui
Abstract:
We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro
Procedia PDF Downloads 3123578 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness
Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem
Abstract:
Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow
Procedia PDF Downloads 5393577 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field
Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf
Abstract:
One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER
Procedia PDF Downloads 1223576 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide
Authors: Sanaz Seraj, Shohre Rouhani
Abstract:
Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.Keywords: fluorescence, graphene oxide, naphthalimide dye, quenching
Procedia PDF Downloads 5893575 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts
Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh
Abstract:
In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain
Procedia PDF Downloads 1713574 Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid
Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne
Abstract:
Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy.Keywords: omeprazole, bromothymol blue, methyl orange and picric acid, charge transfer complexes
Procedia PDF Downloads 5383573 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors
Authors: Khaled Alshammari
Abstract:
Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy
Procedia PDF Downloads 553572 Photoinduced Energy and Charge Transfer in InP Quantum Dots-Polymer/Metal Composites for Optoelectronic Devices
Authors: Akanksha Singh, Mahesh Kumar, Shailesh N. Sharma
Abstract:
Semiconductor quantum dots (QDs) such as CdSe, CdS, InP, etc. have gained significant interest in the recent years due to its application in various fields such as LEDs, solar cells, lasers, biological markers, etc. The interesting feature of the QDs is their tunable band gap. The size of the QDs can be easily varied by varying the synthesis parameters which change the band gap. One of the limitations with II-VI semiconductor QDs is their biological application. The use of cadmium makes them unsuitable for biological applications. III-V QD such as InP overcomes this problem as they are structurally robust because of the covalent bonds which do not allow the ions to leak. Also, InP QDs has large Bohr radii which increase the window for the quantum confinement effect. The synthesis of InP QDs is difficult and time consuming. Authors have synthesized InP using a novel, quick synthesis method which utilizes trioctylphosphine as a source of phosphorus. In this work, authors have made InP composites with P3HT(Poly(3-hexylthiophene-2,5-diyl))polymer(organic-inorganic hybrid material) and gold nanoparticles(metal-semiconductor composites). InP-P3HT shows FRET phenomenon whereas InP-Au shows charge transfer mechanism. The synthesized InP QDs has an absorption band at 397 nm and PL peak position at 491 nm. The band gap of the InP QDs is 2.46 eV as compared to the bulk band gap of InP i.e. 1.35 eV. The average size of the QDs is around 3-4 nm. In order to protect the InP core, a shell of wide band gap material i.e. ZnS is coated on the top of InP core. InP-P3HT composites were made in order to study the charge transfer/energy transfer phenomenon between them. On adding aliquots of P3HT to InP QDs solution, the P3HT PL increases which can be attributed to the dominance of Förster energy transfer between InP QDs (donor) P3HT polymer (acceptor). There is a significant spectral overlap between the PL spectra of InP QDs and absorbance spectra of P3HT. But in the case of InP-Au nanocomposites, significant charge transfer was seen from InP QDs to Au NPs. When aliquots of Au NPs were added to InP QDs, a decrease in the PL of the InP QDs was observed. This is due to the charge transfer from the InP QDs to the Au NPs. In the case of metal semiconductor composites, the enhancement and quenching of QDs depend on the size of the QD and the distance between the QD and the metal NP. These two composites have different phenomenon between donor and acceptor and hence can be utilized for two different applications. The InP-P3HT composite can be utilized for LED devices due to enhancement in the PL emission (FRET). The InP-Au can be utilized efficiently for photovoltaic application owing to the successful charge transfer between InP-Au NPs.Keywords: charge transfer, FRET, gold nanoparticles, InP quantum dots
Procedia PDF Downloads 1453571 Controlled Doping of Graphene Monolayer
Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh
Abstract:
We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.Keywords: graphene, doping, charge transfer, liquid phase exfoliation
Procedia PDF Downloads 623570 Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview
Authors: Mouna Abarkan, Abdelillah Byou, Nacer M'Sirdi, El Hossain Abarkan
Abstract:
This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView.Keywords: model of the battery, adaptive sliding mode observer, the EFK observer, estimation of state of charge, SOC, implementation in Arduino/LabView
Procedia PDF Downloads 3013569 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules
Authors: Rabih Al-Kaysi
Abstract:
When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin
Procedia PDF Downloads 2113568 Entropically Favoured Through Space Charge Transfer ‘Lighted’ Photosensitizing Assemblies for ‘Metal Free’ Regulated Photooxidation of Alcohols and Aldehydes
Authors: Gurpreet Kaur, Manoj Kumar, Vandana Bhalla
Abstract:
Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies. The as prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species (ROS) through Type-I and Type-II pathways. The FN-TPy assemblies exhibit excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions (visible light irradiation, aqueous media, room temperature) using aerial oxygen as the ‘oxidant’. The present study demonstrates the potential of FN-TPy assemblies to catalyze controlled oxidation of benzyl alcohol to benzaldehyde and to corresponding benzoic acid.Keywords: oxidations, photosensitizer, reactive oxygen species, supramolecular assemblies, through space charge transfer.
Procedia PDF Downloads 1173567 Intriguing Modulations in the Excited State Intramolecular Proton Transfer Process of Chrysazine Governed by Host-Guest Interactions with Macrocyclic Molecules
Authors: Poojan Gharat, Haridas Pal, Sharmistha Dutta Choudhury
Abstract:
Tuning photophysical properties of guest dyes through host-guest interactions involving macrocyclic hosts are the attractive research areas since past few decades, as these changes can directly be implemented in chemical sensing, molecular recognition, fluorescence imaging and dye laser applications. Excited state intramolecular proton transfer (ESIPT) is an intramolecular prototautomerization process display by some specific dyes. The process is quite amenable to tunability by the presence of different macrocyclic hosts. The present study explores the interesting effect of p-sulfonatocalix[n]arene (SCXn) and cyclodextrin (CD) hosts on the excited-state prototautomeric equilibrium of Chrysazine (CZ), a model antitumour drug. CZ exists exclusively in its normal form (N) in the ground state. However, in the excited state, the excited N* form undergoes ESIPT along with its pre-existing intramolecular hydrogen bonds, giving the excited state prototautomer (T*). Accordingly, CZ shows a single absorption band due to N form, but two emission bands due to N* and T* forms. Facile prototautomerization of CZ is considerably inhibited when the dye gets bound to SCXn hosts. However, in spite of lower binding affinity, the inhibition is more profound with SCX6 host as compared to SCX4 host. For CD-CZ system, while prototautomerization process is hindered by the presence of β-CD, it remains unaffected in the presence of γCD. Reduction in the prototautomerization process of CZ by SCXn and βCD hosts is unusual, because T* form is less dipolar in nature than the N*, hence binding of CZ within relatively hydrophobic hosts cavities should have enhanced the prototautomerization process. At the same time, considering the similar chemical nature of two CD hosts, their effect on prototautomerization process of CZ would have also been similar. The atypical effects on the prototautomerization process of CZ by the studied hosts are suggested to arise due to the partial inclusion or external binding of CZ with the hosts. As a result, there is a strong possibility of intermolecular H-bonding interaction between CZ dye and the functional groups present at the portals of SCXn and βCD hosts. Formation of these intermolecular H-bonds effectively causes the pre-existing intramolecular H-bonding network within CZ molecule to become weak, and this consequently reduces the prototautomerization process for the dye. Our results suggest that rather than the binding affinity between the dye and host, it is the orientation of CZ in the case of SCXn-CZ complexes and the binding stoichiometry in the case of CD-CZ complexes that play the predominant role in influencing the prototautomeric equilibrium of the dye CZ. In the case of SCXn-CZ complexes, the results obtained through experimental findings are well supported by quantum chemical calculations. Similarly for CD-CZ systems, binding stoichiometries obtained through geometry optimization studies on the complexes between CZ and CD hosts correlate nicely with the experimental results. Formation of βCD-CZ complexes with 1:1 stoichiometry while formation of γCD-CZ complexes with 1:1, 1:2 and 2:2 stoichiometries are revealed from geometry optimization studies and these results are in good accordance with the observed effects by the βCD and γCD hosts on the ESIPT process of CZ dye.Keywords: intermolecular proton transfer, macrocyclic hosts, quantum chemical studies, photophysical studies
Procedia PDF Downloads 1193566 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers
Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver
Abstract:
Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN
Procedia PDF Downloads 703565 Implementation of 4-Bit Direct Charge Transfer Switched Capacitor DAC with Mismatch Shaping Technique
Authors: Anuja Askhedkar, G. H. Agrawal, Madhu Gudgunti
Abstract:
Direct Charge Transfer Switched Capacitor (DCT-SC) DAC is the internal DAC used in Delta-Sigma (∆∑) DAC which works on Over-Sampling concept. The Switched Capacitor DAC mainly suffers from mismatch among capacitors. Mismatch among capacitors in DAC, causes non linearity between output and input. Dynamic Element Matching (DEM) technique is used to match the capacitors. According to element selection logic there are many types. In this paper, Data Weighted Averaging (DWA) technique is used for mismatch shaping. In this paper, the 4 bit DCT-SC-DAC with DWA-DEM technique is implemented using WINSPICE simulation software in 180nm CMOS technology. DNL for DAC with DWA is ±0.03 LSB and INL is ± 0.02LSB.Keywords: ∑-Δ DAC, DCT-SC-DAC, mismatch shaping, DWA, DEM
Procedia PDF Downloads 3473564 Twisted Bilayer Crescent Chiral Metasurface
Authors: Semere Araya Asefa
Abstract:
I described twisted bilayer crescent metasurfaces that link optical properties between two layers and enhance circular dichroism. The interactions between the metasurface layers cause circular dichroism. And we evaluated the parameters that affect the chiroptical response of the crescentKeywords: chiroptical response, chiral metasurface, circular dichroism, chiral sensing
Procedia PDF Downloads 783563 Electronic States at SnO/SnO2 Heterointerfaces
Authors: A. Albar, U. Schwingenschlogel
Abstract:
Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface.Keywords: density of states, ab-initio calculations, interface states, charge transfer
Procedia PDF Downloads 4143562 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers
Authors: H. Asadi, H. Naderan Tahan
Abstract:
The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics
Procedia PDF Downloads 288