Search results for: tsunami loads
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1083

Search results for: tsunami loads

1023 Lessons Learned through a Bicultural Approach to Tsunami Education in Aotearoa New Zealand

Authors: Lucy H. Kaiser, Kate Boersen

Abstract:

Kura Kaupapa Māori (kura) and bilingual schools are primary schools in Aotearoa/New Zealand which operate fully or partially under Māori custom and have curricula developed to include Te Reo Māori and Tikanga Māori (Māori language and cultural practices). These schools were established to support Māori children and their families through reinforcing cultural identity by enabling Māori language and culture to flourish in the field of education. Māori kaupapa (values), Mātauranga Māori (Māori knowledge) and Te Reo are crucial considerations for the development of educational resources developed for kura, bilingual and mainstream schools. The inclusion of hazard risk in education has become an important issue in New Zealand due to the vulnerability of communities to a plethora of different hazards. Māori have an extensive knowledge of their local area and the history of hazards which is often not appropriately recognised within mainstream hazard education resources. Researchers from the Joint Centre for Disaster Research, Massey University and East Coast LAB (Life at the Boundary) in Napier were funded to collaboratively develop a toolkit of tsunami risk reduction activities with schools located in Hawke’s Bay’s tsunami evacuation zones. A Māori-led bicultural approach to developing and running the education activities was taken, focusing on creating culturally and locally relevant materials for students and schools as well as giving students a proactive role in making their communities better prepared for a tsunami event. The community-based participatory research is Māori-centred, framed by qualitative and Kaupapa Maori research methodologies and utilizes a range of data collection methods including interviews, focus groups and surveys. Māori participants, stakeholders and the researchers collaborated through the duration of the project to ensure the programme would align with the wider school curricula and kaupapa values. The education programme applied a tuakana/teina, Māori teaching and learning approach in which high school aged students (tuakana) developed tsunami preparedness activities to run with primary school students (teina). At the end of the education programme, high school students were asked to reflect on their participation, what they had learned and what they had enjoyed during the activities. This paper draws on lessons learned throughout this research project. As an exemplar, retaining a bicultural and bilingual perspective resulted in a more inclusive project as there was variability across the students’ levels of confidence using Te Reo and Māori knowledge and cultural frameworks. Providing a range of different learning and experiential activities including waiata (Māori songs), pūrākau (traditional stories) and games was important to ensure students had the opportunity to participate and contribute using a range of different approaches that were appropriate to their individual learning needs. Inclusion of teachers in facilitation also proved beneficial in assisting classroom behavioral management. Lessons were framed by the tikanga and kawa (protocols) of the school to maintain cultural safety for the researchers and the students. Finally, the tuakana/teina component of the education activities became the crux of the programme, demonstrating a path for Rangatahi to support their whānau and communities through facilitating disaster preparedness, risk reduction and resilience.

Keywords: school safety, indigenous, disaster preparedness, children, education, tsunami

Procedia PDF Downloads 103
1022 Elderly for Elderly: The Role of Community Volunteer, a Case Study from the Great East Japan Earthquake and Tsunami in Kesennuma, Japan

Authors: Kensuke Otsuyama

Abstract:

The United Nation World Conference on Disaster Risk Reduction was held in Sendai, Japan, in 2015 and priorities for actions until 2030 were adopted for the next 15 years. Although one of these priorities is to ‘build back better’, there is neither a consensus definition of better recovery, nor indicators to measure better recovery. However, the community is considered as a key driver of recovery nowadays, and participation is a key word for effective recovery. In order to understand more about participatory community recovery, the author investigated recovery from the Great East Japan Earthquake and Tsunami (GEJET) in Kesennuma, a severely affected city. The research sought to: 1) Identify the elements that contribute to better recovery at the community level, and 2) analyze the role of community volunteers for disaster risk reduction for better recovery. A Participatory Community Recovery Index (PCRI) was created as a tool to measure community recovery. The index adopts seven primary indicators and 20 tertiary indicators, including: socio-economic aspect, housing, health, environment, self-organization, transformation, and institution. The index was applied to nine districts in Kesennuma city. Secondary and primary data by questionnaire surveys with local residents’ organization leaders and interviews with crisis management department officials in city government were also obtained. The indicator results were transformed into scores among 1 to 5, and the results were shown for each district. Based on the result of PCRI, it was found that the s Local Social Welfare Council played an important role in facilitating better recovery, enhancing community volunteer involvement to allow elderly residents to initiate local volunteer work for more affected single-living elderly people. Volunteers for the elderly by the elderly played a crucial role to strengthen community bonding in Kesennuma. In this research, the potential of community volunteers and inter-linkage with DRR activities are discussed.

Keywords: recovery, participation, the great East Japan earthquake and tsunami, community volunteers

Procedia PDF Downloads 237
1021 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey

Authors: Yavuz Yardım

Abstract:

The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.

Keywords: earthquake, seismic assessment, RC buildings, building performance

Procedia PDF Downloads 240
1020 Self-Weight Reduction of Tall Structures by Taper Cladding System

Authors: Divya Dharshini Omprakash, Anjali Subramani

Abstract:

Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed.

Keywords: Lateral Loads Resistance, reduction of self-weight, sustainable, taper clads

Procedia PDF Downloads 262
1019 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads

Authors: Chinazo Onyeka Eziuzo

Abstract:

This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.

Keywords: simulation, control, wind turbine, OpenFAST

Procedia PDF Downloads 75
1018 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 99
1017 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 58
1016 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 69
1015 Safe School Program in Indonesia: Questioning Whether It Is Too Hard to Succeed

Authors: Ida Ngurah

Abstract:

Indonesia is one of the most prone disaster countries, which has earthquake, tsunami or high wave, flood and landslide as well as volcano eruption and drought. Disaster risk reduction has been developing extensively and comprehensively, particularly after tsunami hit in 2004. Yet, saving people live including children and youth from disaster risk is still far from succeed. Poor management of environment, poor development of policy and high level of corruption has become challenges for Indonesia to save its people from disaster impact. Indonesia is struggling to ensure its future best investment, children and youth to have better protection when disaster strike in school hours and have basic knowledge on disaster risk reduction. The program of safe school is being initiated and developed by Plan Indonesia since 2010, yet this effort still needs to be elaborated. This paper is reviewing sporadic safe school programs that have been implemented or currently being implemented Plan Indonesia in few areas of Indonesia, including both rural and urban setting. Methods used are in-depth interview with dedicated person for the program from Plan Indonesia and its implementing patners and analysis of project documents. The review includes program’s goal and objectives, implementation activity, result and achievement as well as its monitoring and evaluation scheme. Moreover, paper will be showing challenges, lesson learned and best practices of the program. Eventually, paper will come up with recommendation for strategy for better implementation of safe school program in Indonesia.

Keywords: disaster impact, safe school, programs, children, youth

Procedia PDF Downloads 336
1014 Protecting Migrants at Risk as Internally Displaced Persons: State Responses to Foreign Immigrants Displaced by Natural Disasters in Thailand, The United States, and Japan

Authors: Toake Endoh

Abstract:

Cross-border migration of people is a critical driver for sustainable economic development in the Asia-Pacific region. Meanwhile, the region is susceptible to mega-scale natural disasters, such as tsunami, earthquakes, and typhoons. When migrants are stranded in a foreign country by a disaster, who should be responsible for their safety and security? What legal or moral foundation is there to advocate for the protection and assistance of “migrants at risk (M@R)”? How can the states practice “good governance” in their response to displacement of the foreign migrants? This paper inquires how to protect foreign migrants displaced by a natural disaster under international law and proposes protective actions to be taken by of migrant-receiver governments. First, the paper discusses the theoretical foundation for protection of M@R and argues that the nation-states are charged of responsibility to protect at-risk foreigners as “internally displaced persons” in the light of the United Nations’ Guiding Principles of Internal Displacement (1998). Second, through the case study of the Kobe Earthquake in Japan (1995), the Tsunami in Thailand (2004), and the Hurricane Katrina in the U.S. (2005), the paper evaluates how effectively (or poorly) institutions and state actors addressed the specific vulnerability felt by M@R in these crises.

Keywords: internal displaced persons, natural disaster, international migration, responsibility to protect

Procedia PDF Downloads 285
1013 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 113
1012 Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness

Authors: S. M. Mahdi Niktabara, K. Seshagiri Raob, Amit Kumar Shrivastavac, Jiří Ščučkaa

Abstract:

The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude.

Keywords: cyclic shear load, frequency of load, amplitude of displacement, normal stiffness

Procedia PDF Downloads 111
1011 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads

Authors: S. Kamil Akin, Turgut Acikara

Abstract:

In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.

Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation

Procedia PDF Downloads 410
1010 Strengthening of Concrete Slabs with Steel Beams

Authors: Mizam Doğan

Abstract:

In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.

Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity

Procedia PDF Downloads 231
1009 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 271
1008 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 232
1007 Portable Water Treatment for Flood Resilience

Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed

Abstract:

Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.

Keywords: flood resilience, membrane desalination, portable water treatment, solar energy

Procedia PDF Downloads 263
1006 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 79
1005 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 13
1004 The Role of the Elastic Foundation Having Nonlinear Stiffness Properties in the Vibration of Structures

Authors: E. Feulefack Songong, A. Zingoni

Abstract:

A vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Although vibrations can be linear or nonlinear depending on the basic components of the system, the interest is mostly pointed towards nonlinear vibrations. This is because most structures around us are to some extent nonlinear and also because we need more accurate values in an analysis. The goal of this research is the integration of nonlinearities in the development and validation of structural models and to ameliorate the resistance of structures when subjected to loads. Although there exist many types of nonlinearities, this thesis will mostly focus on the vibration of free and undamped systems incorporating nonlinearity due to stiffness. Nonlinear stiffness has been a concern to many engineers in general and Civil engineers in particular because it is an important factor that can bring a good modification and amelioration to the response of structures when subjected to loads. The analysis of systems will be done analytically and then numerically to validate the analytical results. We will first show the benefit and importance of stiffness nonlinearity when it is implemented in the structure. Secondly, We will show how its integration in the structure can improve not only the structure’s performance but also its response when subjected to loads. The results of this study will be valuable to practicing engineers as well as industry practitioners in developing better designs and tools for their structures and mechanical devices. They will also serve to engineers to design lighter and stronger structures and to give good predictions as for the behavior of structures when subjected to external loads.

Keywords: elastic foundation, nonlinear, plates, stiffness, structures, vibration

Procedia PDF Downloads 111
1003 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations

Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung

Abstract:

This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.

Keywords: floating bridge, mooring line, pontoon, wave excitation

Procedia PDF Downloads 106
1002 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 267
1001 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 662
1000 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 113
999 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: impulsive loaded plates, dynamic analysis, ABAQUS, material nonlinearity

Procedia PDF Downloads 495
998 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads

Authors: Mezigheche Nawel, Gouasmia Abdelhacine, Athmani Allaeddine, Merzoud Mouloud

Abstract:

Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.

Keywords: finite element, masonry infill walls, rigidity of the masonry, tended diagonal

Procedia PDF Downloads 462
997 Behavior Evaluation of an Anchored Wall

Authors: Polo G. Yohn Edison, Rocha F. Pedricto

Abstract:

This work presents a study about a retaining structure designed for the duplication of the rail FEPASA on the 74th km between Santos and São Paulo. This structure, an anchored retaining wall, was instrumented in the anchors heads with strain gauges in order to monitor its loads. The load measurements occurred during the performance test, locking and also after the works were concluded. A decrease on anchors loads is noticed at the moment immediately after the locking, during construction and after the works finished. It was observed that a loss of load in the anchors occurred to a maximum of 54%.

Keywords: instrumentation, strain gauges, retaining wall, anchors

Procedia PDF Downloads 463
996 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil

Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha

Abstract:

Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.

Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management

Procedia PDF Downloads 279
995 Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam

Authors: Faroudja Meziani, Amar Kahil

Abstract:

In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.

Keywords: settlement, dynamic analysis, rockfill dam, effect of earthquake, soil dynamics

Procedia PDF Downloads 108
994 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 307