Search results for: time delay control (TDC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25869

Search results for: time delay control (TDC)

25629 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 555
25628 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 249
25627 Investigation of the Variables Affecting the Use of Charcoal to Delay Fermentation in Wet Beans Slurry Using Chemical and Physical Analysis

Authors: Anuoluwapo O. Adewole

Abstract:

Fermentation is the conversion of monomeric sugars into ethanol and carbondioxide in the presence of microorganisms under anaerobic conditions. In line with the aim and objective of this research project, which is to investigate into the variables affecting the use of charcoal to delay fermentation in wet beans slurry, some physical and chemical analysis were carried out on the wet beans slurry using a PH meter in which a thermometer is incorporated in it, and a measuring cylinder was used for the foam level test. About 250 grams of the ground beans slurry was divided into two portions for testing. The sample with charcoal was labeled sample 'A' while the second sample without charcoal was labeled sample 'B' subsequently. The experiment lasted for a period of 41.15 hours (i.e., forty-one hours and nine minutes). During the fourth process, both samples could not be tested as the laboratory had been saturated with foul odor and both samples were packed and sealed in polythene bag for disposal in the trash can. It was generally observed that the sample with the charcoal lasted for a longer time before that without charcoal before total spoilage occurred.

Keywords: fermentation, monomeric sugars, beans slurry, charcoal, anaerobic conditions

Procedia PDF Downloads 299
25626 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 438
25625 Explore the Effect of Telecare for the Elderly in Preventing and Delaying the Quality of Disability Care with Bluetooth Brainwave Equipment

Authors: Jui-Chen Huang

Abstract:

The purpose of this study is to explore the effects of telecare on preventing and delaying the quality of disability care in elderly people with portable comfort Bluetooth brainwave devices with remote healthcare functions. Through the teaching videos and remotely teaching the elderly, which had ever learned the care courses of the prevent and delay disability, these elderly did muscle strength training. Then this paper explores the effect of training with the data by SPSS 18.0 statistical software. The data is collected with pre-test, post-test and analyze data from the measure of the Bluetooth brain wave equipment including the pressure index, relaxation index, attention and fatigue index of the elderly. In this study, 30 elderly people who had taken preventive and delayed disability care courses were studied to explore the effect of their care quality improvement. The results showed that the pressure index, relaxation index, attention, and fatigue index of the elderly had statistically significant differences in two months. It can be seen that elderly people who have been treated to prevent and delay disability care courses can significantly improve their care quality if they continue to receive intensive training to prevent and delay disability through remote mode. This telecare is applied to the elderly program that has been used to prevent and delay disability care courses. It is worth continuing to promote, and it is recommended that follow-up studies be conducted in a longer-term manner to explore long-term benefits. It can solve the current insufficiency of long-term care resources, but the demand is urgent.

Keywords: telecare, bluetooth brainwave equipment, prevention and delay of disability, the elderly, care quality

Procedia PDF Downloads 125
25624 Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows

Authors: Hamid Ghasemzadeh- Nava, Maziar Kaveh Baghbadorani, Amin Tamadon

Abstract:

Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups.

Keywords: conception rate, oxytocin, RFM, time to first service

Procedia PDF Downloads 411
25623 EEG and ABER Abnormalities in Children with Speech and Language Delay

Authors: Bharati Mehta, Manish Parakh, Bharti Bhandari, Sneha Ambwani

Abstract:

Speech and language delay (SLD) is seen commonly as a co-morbidity in children having severe resistant focal and generalized, syndromic and symptomatic epilepsies. It is however not clear whether epilepsy contributes to or is a mere association in the pathogenesis of SLD. Also, it is acknowledged that Auditory Brainstem Evoked Responses (ABER), besides used for evaluating hearing threshold, also aid in prognostication of neurological disorders and abnormalities in the hearing pathway in the brainstem. There is no circumscribed or surrogate neurophysiologic laboratory marker to adjudge the extent of SLD. The current study was designed to evaluate the abnormalities in Electroencephalography (EEG) and ABER in children with SLD who do not have an overt hearing deficit or autism. 94 children of age group 2-8 years with predominant SLD and without any gross motor developmental delay, head injury, gross hearing disorder, cleft lip/palate and autism were selected. Standard video Electroencephalography using the 10:20 international system and ABER after click stimulus with intensities 110 db until 40 db was performed in all children. EEG was abnormal in 47.9% (n= 45; 36 boys and 9 girls) children. In the children with abnormal EEG, 64.5% (n=29) had an abnormal background, 57.8% (n=27) had presence of generalized interictal epileptiform discharges (IEDs), 20% (n=9) had focal epileptiform discharges exclusively from left side and 33.3% (n=15) had multifocal IEDs occurring both in isolation or associated with generalised abnormalities. In ABER, surprisingly, the peak latencies for waves I, III & V, inter-peak latencies I-III & I-V, III-V and wave amplitude ratio V/I, were found within normal limits in both ears of all the children. Thus in the current study it is certain that presence of generalized IEDs in EEG are seen in higher frequency with SLD and focal IEDs are seen exclusively in left hemisphere in these children. It may be possible that even with generalized EEG abnormalities present in these children, left hemispheric abnormalities as a part of this generalized dysfunction may be responsible for the speech and language dysfunction. The current study also emphasizes that ABER may not be routinely recommended as diagnostic or prognostic tool in children with SLD without frank hearing deficit or autism, thus reducing the burden on electro physiologists, laboratories and saving time and financial resources.

Keywords: ABER, EEG, speech, language delay

Procedia PDF Downloads 491
25622 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control

Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia

Abstract:

This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.

Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface

Procedia PDF Downloads 542
25621 Commutativity of Fractional Order Linear Time-Varying Systems

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of MATLAB (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, analog control

Procedia PDF Downloads 86
25620 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 236
25619 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 46
25618 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 202
25617 Intelligent Control of Bioprocesses: A Software Application

Authors: Mihai Caramihai, Dan Vasilescu

Abstract:

The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.

Keywords: intelligent, control, fuzzy model, bioprocess optimization

Procedia PDF Downloads 287
25616 A Survey of Dynamic QoS Methods in Sofware Defined Networking

Authors: Vikram Kalekar

Abstract:

Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.

Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay

Procedia PDF Downloads 163
25615 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: active flow control, flow-field, OpenFOAM, plasma actuator

Procedia PDF Downloads 275
25614 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 108
25613 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 342
25612 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 422
25611 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects

Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed

Abstract:

Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.

Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis

Procedia PDF Downloads 352
25610 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things

Authors: Wei Hu, Wenguang Chen, Chong Dong

Abstract:

In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.

Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management

Procedia PDF Downloads 98
25609 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 82
25608 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 480
25607 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach

Authors: Jorge R. Santos, Pedro Sebastiao

Abstract:

In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.

Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js

Procedia PDF Downloads 102
25606 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 508
25605 Fuzzy Logic and Control Strategies on a Sump

Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli

Abstract:

Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

Keywords: fuzzy, sump, level, controller

Procedia PDF Downloads 216
25604 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 288
25603 A New Verification Based Congestion Control Scheme in Mobile Networks

Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj

Abstract:

A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.

Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain

Procedia PDF Downloads 413
25602 Designing Electronic Kanban in Assembly Line Tailboom at XYZ Corp to Reducing Lead Time

Authors: Nadhifah A. Nugraha, Dida D. Damayanti, Widia Juliani

Abstract:

Airplanes manufacturing is growing along with the increasing demand from consumers. The helicopter's tail called Tailboom is a product of the helicopter division at XYZ Corp, where the Tailboom assembly line is a pull system. Based on observations of existing conditions that occur at XYZ Corp, production is still unable to meet the demands of consumers; lead time occurs greater than the plan agreed upon by the consumers. In the assembly process, each work station experiences a lack of parts and components needed to assemble components. This happens because of the delay in getting the required part information, and there is no warning about the availability of parts needed, it makes some parts unavailable in assembly warehouse. The lack of parts and components from the previous work station causes the assembly process to stop, and the assembly line also stops at the next station. In its completion, the production time was late and not on the schedule. In resolving these problems, the controlling process is needed, which is controlling the assembly line to get all components and subassembly in the right amount and at the right time. This study applies one of Just In Time tools, namely Kanban and automation, should be added as efficiently and effectively communication line becomes electronic Kanban. The problem can be solved by reducing non-value added time, such as waiting time and idle time. The proposed results of controlling the assembly line of Tailboom result in a smooth assembly line without waiting, reduced lead time, and achieving production time according to the schedule agreed with the consumers.

Keywords: kanban, e-Kanban, lead time, pull system

Procedia PDF Downloads 81
25601 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control

Procedia PDF Downloads 127
25600 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot

Procedia PDF Downloads 380